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2Departament de F́ısica Fonamental & Institut de Ciències del Cosmos (ICC),
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We present a IIB supergravity solution dual to a spatially anisotropic finite-temperature N = 4
super Yang-Mills plasma. The solution is static and completely regular. The full geometry can be
viewed as a renormalization group flow from an ultraviolet AdS geometry to an infrared Lifshitz-like
geometry. The anisotropy can be equivalently understood as resulting from a position-dependent
θ-term or from a non-zero number density of dissolved D7-branes. The holographic stress tensor
is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the
thermodynamics. The phase diagram exhibits homogeneous and inhomogeneous (i.e. mixed) phases.
In some regions the homogeneous phase displays instabilities reminiscent of those of weakly coupled
plasmas. We comment on similarities with QCD at finite baryon density and with the phenomenon
of cavitation.

1. Introduction. The realization that the quark-gluon
plasma (QGP) produced in heavy ion collisions (HIC) is
strongly coupled [1] has provided motivation for under-
standing the dynamics of strongly coupled non-Abelian
plasmas through the gauge/string duality [2] (see [3] for
a review of applications to the QGP). The simplest ex-
ample of the duality is the equivalence between four-
dimensionalN = 4 SU(Nc) super Yang-Mills (SYM) the-
ory and IIB string theory on AdS5×S5. Here we extend
this example to the case in which the SYM plasma is spa-
tially anisotropic. For accessibility by a broad audience,
details will appear elsewhere [4]. Previous holographic
studies of anisotropic plasmas include [5, 6]. One impor-
tant difference with the gravity solution of [6] is that the
latter possesses a naked singularity, whereas our solution
is completely regular.

Part of our motivation comes from the fact that the
QGP created in HIC is anisotropic. An intrinsically
anisotropic hydrodynamic description has been proposed
to describe the early stage after the collision [7]. After
that stage each little cube of QGP is isotropic in its own
rest frame, but even in this phase certain observables may
be sensitive to the physics in several adjacent cubes.

Weakly coupled plasmas, both Abelian and non-
Abelian, are known to suffer from instabilities in the pre-
sence of anisotropies [8]. It is therefore interesting to
understand whether this also happens in strongly cou-
pled anisotropic plasmas. Our gravity solution exhibits
instabilities reminiscent of weak-coupling instabilities.

At a more theoretical level, motivation is provided by
a connection with the fluid/gravity correspondence [9]
and the blackfold approach to black hole dynamics [10],
both of which assert that the effective theory describing
the long-wavelength dynamics of a black hole horizon is
a hydrodynamic theory. Inclusion of conserved p-form
charges on the gravity side leads to anisotropic hydrody-
namics [11].

The IIB supergravity solution that we will present is
a finite-temperature generalization of that of [12] and:
(i ) it is static and anisotropic; (ii ) it possesses a horizon
and it is regular on and outside the horizon; (iii ) it obeys
AdS5 × S5 asymptotic boundary conditions. Staticity is
required for simplicity, since e.g. we would like to study
the thermodynamics of the system. The presence of a
horizon is dual to the existence of a finite-temperature
plasma in the gauge theory. Regularity guarantees that
calculations are unambiguous and well defined. The
boundary conditions ensure that holography is on its
firmest footing and that the solution is solidly embed-
ded in string theory.

As in [12], we deform the SYM theory by a θ-parameter
that depends linearly on one of the three spatial coordi-
nates, θ = 2πnD7z, where nD7 is a constant with dimen-
sions of energy. In other words, we add to the SYM
action a term δS ∝

∫
θ(z) TrF ∧ F . The system we are

describing is therefore a static plasma in thermal equi-
librium in the presence of an anisotropic external source.
Yet, translation invariance is preserved, since integration
by parts yields δS ∝ −nD7

∫
dz ∧ Tr

(
A ∧ F + 2

3A
3
)
.

The dual gravity description is as follows. Since the θ-
parameter is dual to the IIB axion χ [23], we expect that
in the gravity solution this will be of the form χ = az.
It turns out [4] that a = λnD7/4πNc, where λ = g2YMNc

is the ’t Hooft coupling. Since the axion is magnetically
sourced by D7-branes, the solution can be interpreted
in terms of a number of D7-branes wrapped on the S5,
extending along the xy-directions and distributed along
the z-direction with density nD7 = dND7/dz [4, 12]. For
this reason we will refer to a and/or nD7 as a ‘charge
density’. Thus in the gravity description it is clear that
isotropy is broken by the presence of anisotropic extended
objects. Since their full backreaction is incorporated, the
D7-branes are completely ‘dissolved’ in the geometry, just
like the Nc D3-branes that give rise to AdS5×S5. Unlike



2

the case of flavour D7-branes [13], the D7-branes consid-
ered here do not extend in the radial direction. Conse-
quently, they do not reach the AdS boundary and they
do not add new degrees of freedom to the SYM theory.

As in [12], the solution can be viewed as a renormali-
zation group (RG) flow between an AdS geometry in the
ultraviolet and a Lifshitz-like geometry in the infrared.
At T = 0 the Lifshitz metric (in string frame) possesses
a naked curvature singularity [4], but this is hidden be-
hind the horizon at T > 0.

2. Solution. The ten-dimensional solution is a direct
product, one of whose factors is an S5 of constant radius
L in the Einstein frame. Therefore it can be viewed as
a solution of five-dimensional supergravity with cosmo-
logical constant Λ = −6/L2. Since only the metric g,
the axion χ, and the dilaton φ are excited, it suffices to
consider the axion-dilaton-gravity action

S =
1

2κ2

∫ √−g
(
R+ 12− 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

)
+SGH,

(1)
where we have set L = 1 and SGH is the Gibbons-Hawking
boundary term. The Einstein-frame metric is

ds2 =
e−

1
2φ

u2

(
−FB dt2 + dx2 + dy2 +Hdz2 +

du2

F

)
,(2)

and χ = az. Isotropy in the xy-directions is clearly re-
spected, but not in the z-direction unless H = 1. The
axion induces the anisotropy. F is a ‘blackening factor’
that vanishes at the horizon, u = uH. The boundary is
at u = 0. The dilaton only depends on the radial co-
ordinate u, as do F , B, and H, which are completely
determined in terms of φ. This in turn obeys a third-
order ordinary differential equation which we solved nu-
merically [4]. The temperature is determined from the
requirement that the Euclidean continuation of (2) be
regular, and the entropy density from the area of the
horizon. These quantities are well defined since the so-
lution is static, i.e. the dual plasma is in thermal equi-
librium (see Section 5). Fig. 1(left) shows the entropy
density as a function of a/T , normalized by the isotropic
value s0(T ) = π2N2

c T
3/2 [14]. This provides us with the

following check. We see from the log-log plot that for
small a/T the points lie on the horizontal axis, while for
large a/T they lie along a line with slope 1/3. Thus at
T � a we recover the isotropic result, whereas at T � a
we recover the Lifschitz scaling s ∝ a1/3T 8/3 found in
[12]. This interpolating behaviour is expected from the
interpretation of the solution as an RG flow.

3. Holographic stress tensor. The energy density
and the pressures can be obtained from the holographic
stress tensor, whose calculation requires the addition of
counterterms to (1). These can be obtained from [15, 16]

and (in Euclidean signature) take the form

Sct =
1

κ2

∫
d4x
√
γ

(
3− 1

8
e2φ∂iχ∂

iχ

)
−log v

∫
d4x
√
γA ,
(3)

where v is the Fefferman-Graham (FG) coordinate, γ
is the induced metric on a v = v0 surface, and the
limit v0 → 0 is understood. A(γij , φ, χ) is the conformal
anomaly, which when evaluated on our solution takes the
value A(γij , φ, χ) = N2

c a
4/48π2.

From the results of [16] the stress tensor is seen to be
diagonal, 〈Tij〉 = diag(E,P⊥, P⊥, P‖), and to obey

∂i〈Tij〉 = 0 ,
〈
T ii
〉

= A , (4)

thus confirming that translation invariance is preserved.
P⊥ (P‖) are the pressures in the x, y (z) directions. As
a consequence of the anomaly the transformation of the
stress tensor under a rescaling of a, T contains an inho-
mogeneous piece [4, 17], i.e.

〈Tij(ka, kT )〉 = k4 〈Tij(a, T )〉+ k4 log k Ahij , (5)

where hij = diag (1,−1,−1, 3). In turn, this means that
the stress tensor must take the form

〈Tij(a, T )〉 = a4 tij (a/T ) + log (a/µ) Ahij , (6)

where the arbitrary reference scale µ is a remnant of
the renormalization process, much like the subtraction
point in Quantum Chromodynamics (QCD). Different
choices of µ are simply different choices of renormali-
zation scheme. We emphasize that the presence of this
scale implies that the physics depends on the two dimen-
sionless ratios T/µ and a/µ, not just on T/a. Represen-
tative plots of the energy and the pressures are shown in
Fig. 1(center).
4. Thermodynamics. As usual, the free energy
F (a, T ) = E − Ts = −P⊥ is obtained from the on-
shell Euclidean action and satisfies (∂F/∂T )a = −s
[4, 11]. Unlike the entropy density, which is scheme-
independent, the energy density and the pressures are
scheme-dependent (i.e. depend on µ), but the thermody-
namic relations among them are scheme-independent [4].
We recall that the necessary and sufficient conditions for
local thermodynamic stability are

ca ≡ T (∂S/∂T )a > 0 , F ′′ ≡
(
∂2F/∂a2

)
T
> 0 . (7)

5. Phase diagram. Approximate analytic solutions
can be found in the limits T � a, µ and T � a, µ, and
these suffice to draw the qualitative phase diagram shown
in Fig. 1(right), which we have also verified numerically
[4]. F ′′(a, T ) is negative in Zone I and positive in Zones
II and III. P‖(a, T ) − P 0(T ) is negative in Zones I and
II and positive in Zone III, with P 0(T ) = π2N2

c T
4/8 the

isotropic pressure. Note that each of the three zones in-
cludes points with T = 0 as well as points with arbitrarily
large a and T .
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We first note that the Euclidean continuation of the metric (6) in the (tE, u)-plane near uH

reads

ds2
E ≈ e−

1
2
φH

u2
H

[
F1BH(uH − u) dt2E +

du2

F1(uH − u)

]
, (12)

where F1 = −F ′(uH). The standard requirement that the metric be regular at u = uH

then determines the period of the Euclidean time, δtE, which we identify with the inverse
temperature:

T =
1

δtE
=

F1

√BH

4π
. (13)

The entropy density is simply obtained from the area of the horizon. The area element on a
t = const., u = uH hypersurface is

dAH =
e−

5
4
φH

u3
H

dx dy dz ,

so the entropy density per unit volume in the xyz-directions is

s =
AH

4GV3
=

π2

2
N2

c × e−
5
4
φH

π3u3
H

. (14)

The isotropic black D3-brane solution is a solution of the equations above with a = 0 and

φ = 0 , B = H = 1 , F = 1 − u4

u4
H

, uH =
1

πT
. (15)

Eqn. (14) then yields the familiar expression for the entropy density of N = 4 SYM [49]:

sSYM =
π2

2
N2

c T 3 . (16)

log

(
s

sSYM

)
(17)

log
( a

T

)
(18)

At this point we can perform an interesting check on our solution. As mentioned above,
the zero-temperature solution is a domain-wall-like solution interpolating between an AdS
geometry in the UV and an Lifshitz-like geometry in the IR [34]. The radial position at which
the transition takes place is set by the anisotropic scale, a. Thus we expect that in the limit
T % a the entropy density should scale as in (17), since in this limit the horizon should lie
in the asymptotic region where the geometry is approximately AdS. In the opposite limit we
expect the entropy density to scale as

s = centN
2
c a1/3T 8/3 (19)

with cent a numerical coefficient, since this is the scaling in the Lifshitz-like region deep down
in the IR in which the horizon lies when T & a (see Appendix B for details). These scalings
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π2

2
N2

c T 3 . (16)

log
( s

s0
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(17)

At this point we can perform an interesting check on our solution. As mentioned above,
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in the asymptotic region where the geometry is approximately AdS. In the opposite limit we
expect the entropy density to scale as

s = centN
2
c a1/3T 8/3 (18)

with cent a numerical coefficient, since this is the scaling in the Lifshitz-like region deep down
in the IR in which the horizon lies when T & a (see Appendix B for details). These scalings
are exactly reproduced by the entropy density computed with our numerical solution (see
Appendix A for details), as shown in Fig. 3. This plot was produced by evaluating the
entropy density for many different values of a and T . We see that for a & T the points are
aligned along the horizontal axis, thus reproducing (16). In the opposite regime a % T , the
points are aligned instead along a straight line with slope 1/3, which means that the entropy
density scales in this case as in (17). In between the entropy density smoothly interpolates
between the two limiting behaviours.
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With this information we can now draw the qualitative phase diagram. There are three
curves defined by the conditions Φ(a, T ) = 0 (magenta, dotted curve), Pz(a, T ) − P 0(T ) = 0
(blue, solid curve) and Φ′(a, T ) = 0 (red, dashed). These three curves intercept the vertical,
zero-temperature axis at the points ai defined above. Note that the slope at T = 0 of the
first curve is positive, whereas the slopes of the other two are negative. This can be seen
by examining the leading temperature correction to the zero-temperature results (81)-(83).
Consider for example the chemical potential. Let (nT , na) be the tangent vector to the curve
Φ(T, a) = 0 at the point (T, a) = (0, a1). By definition the derivative of Φ along the curve
vanishes, namely

0 = nT
∂Φ

∂T
+ na

∂Φ

∂a
. (84)

Obviously at (T, a) = (0, a1) we have nT > 0, we see from eqn. (77) that ∂Φ/∂T < 0, and we
know that ∂Φ/∂a > 0 since Φ goes from negative to positive across the curve in the direction
of increasing a. It follows that we must have na > 0. The same argument applies to the
quantities Pz(a, T )−P 0(T ) and Φ′(a, T ), except that in this case the temperature derivative
is positive and hence na < 0.

Note also that the all the three curves must ‘extend to infinity’ in the sense that they must
contain points for which both T and a are arbitrarily large. To see this, consider again the
chemical potential. This is negative in the limit T " a, µ but positive in the limit a " T, µ.
Thus if we start at any point (T, a) at which Φ is negative and we increase a with T fixed,
eventually we reach the regime in which a " T, µ where Φ must be positive. Thus a vertical,
constant-T line always crosses the curve Φ = 0 no matter how large T is. Similarly, if we
start at a point (T, a) where Φ is positive and we increase T with a fixed, eventually we reach
the regime in which T " a, µ where Φ must be negative. Thus a horizontal, constant-a line
always crosses the curve Φ = 0 no matter how large a is (in particular, provided it is larger
than a1).

Returning to the phase diagram, we see that in region IV, i.e. below the red, dashed curve,
we have

Pz(a, T ) < P 0(T ) , Φ(a, T ) < 0 , Φ′(a, T ) < 0 , (85)

and consequently in this region the system is both locally and globally unstable. Above this
curve but below the blue, continuous curve we have

Pz(a, T ) < P 0(T ) , Φ(a, T ) < 0 , Φ′(a, T ) > 0 , (86)

and hence the system is locally stable but globally unstable. Finally, above the blue, contin-
uous curve we have

Pz(a, T ) > P 0(T ) , Φ(a, T ) < 0 , Φ′(a, T ) > 0 , (87)

and thus the system is completely stable. We can now understand what happens if Lz is
finite and the total charge ā is such that the charge density a = ā/Lz that would correspond
to a homogenous distribution across the entire Lz yields a point in regions I II III or IV. In
this case the global minimum of the free energy is not this homogeneous distribution, but
a configuration in which the isotropic and the aniosotropic phases coexist. The two phase
occupy fractions "iso and "aniso of the total length such that the density of the anisotropic part
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reads
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H
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Eqn. (14) then yields the familiar expression for the entropy density of N = 4 SYM [49]:

sSYM =
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2
N2
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s
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in the asymptotic region where the geometry is approximately AdS. In the opposite limit we
expect the entropy density to scale as

s = centN
2
c a1/3T 8/3 (19)

with cent a numerical coefficient, since this is the scaling in the Lifshitz-like region deep down
in the IR in which the horizon lies when T & a (see Appendix B for details). These scalings
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with cent a numerical coefficient, since this is the scaling in the Lifshitz-like region deep down
in the IR in which the horizon lies when T & a (see Appendix B for details). These scalings
are exactly reproduced by the entropy density computed with our numerical solution (see
Appendix A for details), as shown in Fig. 3. This plot was produced by evaluating the
entropy density for many different values of a and T . We see that for a & T the points are
aligned along the horizontal axis, thus reproducing (16). In the opposite regime a % T , the
points are aligned instead along a straight line with slope 1/3, which means that the entropy
density scales in this case as in (17). In between the entropy density smoothly interpolates
between the two limiting behaviours.

7FIG. 1: Entropy density as a function of a/T .

As in [13], the solution can be viewed as a renorma-
lization group (RG) flow between an AdS geometry in
the ultraviolet (UV) and a Lifshitz-like geometry in the
infrared (IR). At T = 0 the Lifshitz metric (in string
frame) possesses a naked curvature singularity [4], but
this is hidden behind the horizon at T > 0.
2. Solution. The ten-dimensional solution is a direct
product, one of whose factors is an S5 of constant ra-
dius L in the Einstein frame. Therefore it can be viewed
as a solution of five-dimensional supergravity with cos-
mological constant Λ = −6/L2. Since only the metric,
the axion χ, and the dilaton φ are excited, it suffices to
consider the axion-dilaton-gravity action

S =
1

2κ2

∫ √−g

(
R + 12 − 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

)
+SGH,

(1)
where we have set L = 1 and SGH is the Gibbons-Hawking
boundary term. The Einstein-frame metric is

ds2 =
e−

1
2φ

u2

(
−FB dt2 + dx2 + dy2 + Hdz2 +

du2

F

)
,(2)

and χ = az. Isotropy in the xy-directions is clearly re-
spected, but not in the z-direction unless H = 1. The
axion induces the anisotropy. F is a ‘blackening factor’
that vanishes at the horizon, u = uH. The boundary is at
u = 0. The dilaton only depends on the radial coordinate
u, as do F , B, and H, which are completely determined in
terms of φ. This in turn obeys a third-order ordinary dif-
ferential equation which we solved numerically [4]. The
temperature is determined from the requirement that the
Euclidean continuation of (2) be regular, and the entropy
density from the area of the horizon. Fig. 1 shows the
entropy density as a function of a/T , normalized by the
isotropic value s0(T ) = π2N2

c T 3/2 [15]. This provides us
with the following check. We see from the log-log plot
that for small a/T the points lie on the horizontal axis,
while for large a/T they lie along a line with slope 1/3.
Thus at T # a we recover the isotropic result, whereas
at T $ a we recover the Lifschitz scaling s ∝ a1/3T 8/3

found in [13]. This interpolating behaviour is expected
from the interpretation of the solution as an RG flow.
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3. Holographic stress tensor. The energy density
and the pressures can be obtained from the holographic
stress tensor, whose calculation requires the addition of
counterterms to (1). These can be obtained from [16, 17]
and (in Euclidean signature) take the form
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where v is the Fefferman-Graham (FG) coordinate, γ
is the induced metric on a v = v0 surface, and the
limit v0 → 0 is understood. A(γij , φ, χ) is the conformal
anomaly, which when evaluated on our solution takes the
value A(γij , φ, χ) = N2

c a4/48π2.

From the results of [17] the stress tensor is seen to be
diagonal, 〈Tij〉 = diag(E,Pxy, Pxy, Pz), and to obey

∂i〈Tij〉 = 0 ,
〈
T i

i

〉
= A , (4)

thus confirming that translation invariance is preserved.
We use the notation Pxy ≡ Px = Py as a reminder that
the pressures in the x- and y-directions are equal, whereas
Pxy *= Pz. As a consequence of the anomaly the trans-
formation of the stress tensor under a rescaling of a, T
contains an inhomogeneous piece [4, 18], i.e.

〈Tij(ka, kT )〉 = k4 〈Tij(a, T )〉 + k4 log k A hij , (5)

where hij = diag (1,−1,−1, 3). In turn, this means that
the stress tensor must take the form

〈Tij(a, T )〉 = a4 tij (a/T ) + log (a/µ) A hij , (6)

where the arbitrary reference scale µ is a remnant of the
renormalization process, much like the subtraction point
in QCD. Different choices of µ are simply different choices
of renormalization scheme. We emphasize that the pre-
sence of this scale implies that

, not just on T/a.the physics depends on the two di-
mensionless ratios T/µ and a/µ

, not just on T/a. Representative plots of the energy
and the pressures are shown in Fig. 2.
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the zero-temperature solution is a domain-wall-like solution interpolating between an AdS
geometry in the UV and an Lifshitz-like geometry in the IR [34]. The radial position at which
the transition takes place is set by the anisotropic scale, a. Thus we expect that in the limit
T % a the entropy density should scale as in (17), since in this limit the horizon should lie
in the asymptotic region where the geometry is approximately AdS. In the opposite limit we
expect the entropy density to scale as
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with cent a numerical coefficient, since this is the scaling in the Lifshitz-like region deep down
in the IR in which the horizon lies when T & a (see Appendix B for details). These scalings
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in the IR in which the horizon lies when T & a (see Appendix B for details). These scalings
are exactly reproduced by the entropy density computed with our numerical solution (see
Appendix A for details), as shown in Fig. 3. This plot was produced by evaluating the
entropy density for many different values of a and T . We see that for a & T the points are
aligned along the horizontal axis, thus reproducing (16). In the opposite regime a % T , the
points are aligned instead along a straight line with slope 1/3, which means that the entropy
density scales in this case as in (17). In between the entropy density smoothly interpolates
between the two limiting behaviours.
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u, as do F , B, and H, which are completely determined in
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ferential equation which we solved numerically [4]. The
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We use the notation Pxy ≡ Px = Py as a reminder that
the pressures in the x- and y-directions are equal, whereas
Pxy *= Pz. As a consequence of the anomaly the trans-
formation of the stress tensor under a rescaling of a, T
contains an inhomogeneous piece [4, 18], i.e.
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where hij = diag (1,−1,−1, 3). In turn, this means that
the stress tensor must take the form

〈Tij(a, T )〉 = a4 tij (a/T ) + log (a/µ) A hij , (6)

where the arbitrary reference scale µ is a remnant of the
renormalization process, much like the subtraction point
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At this point we can perform an interesting check on our solution. As mentioned above,
the zero-temperature solution is a domain-wall-like solution interpolating between an AdS
geometry in the UV and an Lifshitz-like geometry in the IR [34]. The radial position at which
the transition takes place is set by the anisotropic scale, a. Thus we expect that in the limit
T % a the entropy density should scale as in (17), since in this limit the horizon should lie
in the asymptotic region where the geometry is approximately AdS. In the opposite limit we
expect the entropy density to scale as

s = centN
2
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with cent a numerical coefficient, since this is the scaling in the Lifshitz-like region deep down
in the IR in which the horizon lies when T & a (see Appendix B for details). These scalings
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u, as do F , B, and H, which are completely determined in
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where v is the Fefferman-Graham (FG) coordinate, γ
is the induced metric on a v = v0 surface, and the
limit v0 → 0 is understood. A(γij , φ, χ) is the conformal
anomaly, which when evaluated on our solution takes the
value A(γij , φ, χ) = N2

c a4/48π2.
From the results of [17] the stress tensor is seen to be

diagonal, 〈Tij〉 = diag(E,Pxy, Pxy, Pz), and to obey

∂i〈Tij〉 = 0 ,
〈
T i

i

〉
= A , (4)

thus confirming that translation invariance is preserved.
We use the notation Pxy ≡ Px = Py as a reminder that
the pressures in the x- and y-directions are equal, whereas
Pxy *= Pz. As a consequence of the anomaly the trans-
formation of the stress tensor under a rescaling of a, T
contains an inhomogeneous piece [4, 18], i.e.

〈Tij(ka, kT )〉 = k4 〈Tij(a, T )〉 + k4 log k A hij , (5)

where hij = diag (1,−1,−1, 3). In turn, this means that
the stress tensor must take the form

〈Tij(a, T )〉 = a4 tij (a/T ) + log (a/µ) A hij , (6)

where the arbitrary reference scale µ is a remnant of the
renormalization process, much like the subtraction point
in QCD. Different choices of µ are simply different choices
of renormalization scheme. We emphasize that the pre-
sence of this scale implies that the physics depends on the
two dimensionless ratios T/µ and a/µ, not just on T/a.

a0/µ Representative plots of the energy and the pres-
sures are shown in Fig. 2.
4. Thermodynamics. As usual, the free energy
F (a, T ) = E−Ts is obtained from the on-shell Euclidean
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It follows that the homogeneous phase with uniform
D7-brane density is in stable thermal equilibrium in Zone
III. In particular, as can be seen from the positive slope
of the continuous red curve in Fig. 1(center), the specific
heat is ca > 0 everywhere. Also, the pressures and the
energy are all monotonically increasing functions of T at
fixed a, so the speed of sound in all directions is real and
positive. There are no thermal instabilities anywhere in
the phase diagram.

In contrast, the homogeneous phase is in unstable ther-
mal equilibrium against infinitesimal charge fluctuations
in Zone I, where the second condition in (7) is violated. In
Zone II the system is in metastable thermal equilibrium,
since it is unstable only against finite charge fluctuations:
the pressure in the z-direction is smaller than the pres-
sure of the isotropic phase, and thus bubbles of isotropic
phase can form and grow, forcing a compression of the
charge in the z-direction [25]. In other words, in Zones
I and II a carefully prepared homogeneous system with
initial (a, T ) will fall apart into a mixed phase consisting
of high-density anisotropic ‘droplets’ or ‘filaments’ sur-
rounded by isotropic regions [26]. The local charge den-
sity a′ > a will be the same in each of the droplets, and
the pressure will exactly equal that of the isotropic phase
at the same final temperature, P‖(a′, T ′) = P 0(T ′). The
pair (a′, T ′) therefore lies on the continuous blue curve
of the phase diagram.

In Landau’s theory of phase transitions the homoge-
neous phase in Zones I, II and III would be described by
a saddle point of the free energy with at least one unsta-
ble direction, by a metastable local minimum, and by a
stable global minimum, respectively.

6. Discussion. Our system is in anisotropic thermal
equilibrium. This is not surprising, since in the gauge
theory isotropy is broken explicitly by an anisotropic
external source. The string description makes it clear
that the resulting system can be thought of as a fluid
with a conserved, isotropy-beaking, two-brane charge
(see e.g. [13]).

It is remarkable that our solution is completely regular
despite the fact that it incorporates the full backreaction

of the D7-branes, whose number scales as nD7 ∼ Nc/λ.
Relatedly, we note that the parameter controlling their
backreaction, λnD7/Nc, is coupling-enhanced as in the
case [20] of flavour D7-branes.

The physics in Zones I and II shares some similarities
with that of QCD at low T and finite baryon density
[21]. In that case the pressure of a chirally broken homo-
geneous phase with density lower than a critical density
n0 is negative (except in a tiny region of very small densi-
ties). This indicates an instability towards the formation
of ‘droplets’ of higher density n0 in which P = 0 and
chiral symmetry is restored, surrounded by empty space
with n = 0 and P = 0. In our case, the role of the chirally
restored phase is played by the anisotropic phase, the
analogue of n0 is a0 (see Fig. 1(right)), and the ‘droplets’
correspond to the regions of non-zero D7-brane density.
These similarities suggest that the transition from the
mixed phase to the homogeneous phase may occur via a
percolation mechanism, as in some QCD models [22] of
chiral symmetry restoration [27].

The instabilities we have uncovered are reminiscent of
instabilities of anisotropic weakly coupled plasmas [8].
Somewhat pictorially, the main similarity is the tendency
to ‘filamentation’, which in weakly coupled plasmas can
be understood (very roughly) as the tendency of simi-
larly oriented currents to cluster together. We emphasize
though that there are obvious differences. In a weakly
coupled plasma the anisotropy is ‘dynamical’ since it
arises from the momentum distribution of the particles
that compose the plasma. In contrast, in our case the
plasma is static and intrinsically anisotropic because of
the presence of dissolved extended objects. In any case,
we stress that whether a real connection exists between
the instabilities studied here and those of weakly coupled
plasmas is a question beyond the scope of this letter.

The instabilities of our solution are also reminiscent of
the phenomenon of cavitation, i.e. the formation of bub-
bles of vapour in regions of a flowing liquid in which the
pressure of the liquid drops below its vapour pressure.
Cavitation has been proposed [23] as a mechanism that
would lead to fragmentation of the QGP into droplets
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the case of flavour D7-branes [15], the D7-branes consid-
ered here do not extend in the radial direction. Conse-
quently, they do not reach the AdS boundary and they
do not add new degrees of freedom to the SYM theory.

As in [14], the solution can be viewed as a renormali-
zation group (RG) flow between an AdS geometry in the
ultraviolet and a Lifshitz-like geometry in the infrared.
At T = 0 the Lifshitz metric (in string frame) possesses
a naked curvature singularity [4], but this is hidden be-
hind the horizon at T > 0.

2. Solution. The ten-dimensional solution is a direct
product, one of whose factors is an S5 of constant radius
L in the Einstein frame. Therefore it can be viewed as
a solution of five-dimensional supergravity with cosmo-
logical constant Λ = −6/L2. Since only the metric g,
the axion χ, and the dilaton φ are excited, it suffices to
consider the axion-dilaton-gravity action

S =
1

2κ2

∫ √−g

(
R + 12 − 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

)
+SGH,

(1)
where we have set L = 1 and SGH is the Gibbons-Hawking
boundary term. The Einstein-frame metric is

ds2 =
e−

1
2φ

u2

(
−FB dt2 + dx2 + dy2 + Hdz2 +

du2

F

)
,(2)

and χ = az. Isotropy in the xy-directions is clearly re-
spected, but not in the z-direction unless H = 1. The
axion induces the anisotropy. F is a ‘blackening factor’
that vanishes at the horizon, u = uH. The boundary is
at u = 0. The dilaton only depends on the radial co-
ordinate u, as do F , B, and H, which are completely
determined in terms of φ. This in turn obeys a third-
order ordinary differential equation which we solved nu-
merically [4]. The temperature is determined from the
requirement that the Euclidean continuation of (2) be
regular, and the entropy density from the area of the
horizon. These quantities are well defined since the so-
lution is static, i.e. the dual plasma is in thermal equi-
librium (see Section 5). Fig. 1(left) shows the entropy
density as a function of a/T , normalized by the isotropic
value s0(T ) = π2N2

c T 3/2 [16]. This provides us with the
following check. We see from the log-log plot that for
small a/T the points lie on the horizontal axis, while for
large a/T they lie along a line with slope 1/3. Thus at
T # a we recover the isotropic result, whereas at T $ a
we recover the Lifschitz scaling s ∝ a1/3T 8/3 found in
[14]. This interpolating behaviour is expected from the
interpretation of the solution as an RG flow.

3. Holographic stress tensor. The energy density
and the pressures can be obtained from the holographic
stress tensor, whose calculation requires the addition of
counterterms to (1). These can be obtained from [17, 18]

and (in Euclidean signature) take the form

Sct =
1

κ2

∫
d4x

√
γ

(
3 − 1

8
e2φ∂iχ∂

iχ

)
−log v

∫
d4x

√
γA ,

(3)
where v is the Fefferman-Graham (FG) coordinate, γ
is the induced metric on a v = v0 surface, and the
limit v0 → 0 is understood. A(γij , φ, χ) is the conformal
anomaly, which when evaluated on our solution takes the
value A(γij , φ, χ) = N2

c a4/48π2.
From the results of [18] the stress tensor is seen to be

diagonal, 〈Tij〉 = diag(E,P⊥, P⊥, P‖), and to obey

∂i〈Tij〉 = 0 ,
〈
T i

i

〉
= A , (4)

thus confirming that translation invariance is preserved.

P⊥/N2
c a2

P⊥ (P‖) are the pressures in the x, y (z) directions.
As a consequence of the anomaly the transformation of
the stress tensor under a rescaling of a, T contains an
inhomogeneous piece [4, 19], i.e.

〈Tij(ka, kT )〉 = k4 〈Tij(a, T )〉 + k4 log k A hij , (5)

where hij = diag (1,−1,−1, 3). In turn, this means that
the stress tensor must take the form

〈Tij(a, T )〉 = a4 tij (a/T ) + log (a/µ) A hij , (6)

where the arbitrary reference scale µ is a remnant of
the renormalization process, much like the subtraction
point in Quantum Chromodynamics (QCD). Different
choices of µ are simply different choices of renormali-
zation scheme. We emphasize that the presence of this
scale implies that the physics depends on the two dimen-
sionless ratios T/µ and a/µ, not just on T/a. Represen-
tative plots of the energy and the pressures are shown in
Fig. 1(center).
4. Thermodynamics. As usual, the free energy
F (a, T ) = E − Ts = −P⊥ is obtained from the on-
shell Euclidean action and satisfies (∂F/∂T )a = −s
[4, 13]. Unlike the entropy density, which is scheme-
independent, the energy density and the pressures are
scheme-dependent (i.e. depend on µ), but the thermody-
namic relations among them are scheme-independent [4].
We recall that the necessary and sufficient conditions for
local thermodynamic stability are

ca ≡ T (∂S/∂T )a > 0 , F ′′ ≡
(
∂2F/∂a2

)
T

> 0 . (7)

5. Phase diagram. Approximate analytic solutions
can be found in the limits T # a, µ and T $ a, µ, and
these suffice to draw the qualitative phase diagram shown
in Fig. 1(right), which we have also verified numerically
[4]. F ′′(a, T ) is negative in Zone I and positive in Zones
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We recall that the necessary and sufficient conditions for
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II and III. P‖(a, T ) − P 0(T ) is negative in Zones I and
II and positive in Zone III, with P 0(T ) = π2N2

c T 4/8 the
isotropic pressure. Note that each of the three zones in-
cludes points with T = 0 as well as points with arbitrarily
large a and T .

It follows that the homogeneous phase with uniform
D7-brane density is in stable thermal equilibrium in Zone
III. In particular, as can be seen from the positive slope
of the continuous red curve in Fig. 1(center), the specific
heat is ca > 0 everywhere. Also, the pressures and the
energy are all monotonically increasing functions of T at
fixed a, so the speed of sound in all directions is real and
positive. There are no thermal instabilities anywhere in
the phase diagram.

In contrast, the homogeneous phase is in unstable ther-
mal equilibrium against infinitesimal charge fluctuations
in Zone I, where the second condition in (7) is violated. In
Zone II the system is in metastable thermal equilibrium,
since it is unstable only against finite charge fluctuations:
the pressure in the z-direction is smaller than the pres-
sure of the isotropic phase, and thus bubbles of isotropic
phase can form and grow, forcing a compression of the
charge in the z-direction [25]. In other words, in Zones
I and II a carefully prepared homogeneous system with
initial (a, T ) will fall apart into a mixed phase consisting
of high-density anisotropic ‘droplets’ or ‘filaments’ sur-
rounded by isotropic regions [26]. The local charge den-
sity a′ > a will be the same in each of the droplets, and
the pressure will exactly equal that of the isotropic phase
at the same final temperature, P‖(a′, T ′) = P 0(T ′). The
pair (a′, T ′) therefore lies on the continuous blue curve
of the phase diagram.

In Landau’s theory of phase transitions the homoge-
neous phase in Zones I, II and III would be described by
a saddle point of the free energy with at least one unsta-
ble direction, by a metastable local minimum, and by a
stable global minimum, respectively.

6. Discussion. Our system is in anisotropic thermal
equilibrium. This is not surprising, since in the gauge
theory isotropy is broken explicitly by an anisotropic
external source. The string description makes it clear

that the resulting system can be thought of as a fluid
with a conserved, isotropy-beaking, two-brane charge
(see e.g. [13]).

It is remarkable that our solution is completely regular
despite the fact that it incorporates the full backreaction
of the D7-branes, whose number scales as nD7 ∼ Nc/λ.
Relatedly, we note that the parameter controlling their
backreaction, λnD7/Nc, is coupling-enhanced as in the
case [20] of flavour D7-branes.

The physics in Zones I and II shares some similarities
with that of QCD at low T and finite baryon density
[21]. In that case the pressure of a chirally broken homo-
geneous phase with density lower than a critical density
n0 is negative (except in a tiny region of very small densi-
ties). This indicates an instability towards the formation
of ‘droplets’ of higher density n0 in which P = 0 and
chiral symmetry is restored, surrounded by empty space
with n = 0 and P = 0. In our case, the role of the chirally
restored phase is played by the anisotropic phase, the
analogue of n0 is a0 (see Fig. 1(right)), and the ‘droplets’
correspond to the regions of non-zero D7-brane density.
These similarities suggest that the transition from the
mixed phase to the homogeneous phase may occur via a
percolation mechanism, as in some QCD models [22] of
chiral symmetry restoration [27].

The instabilities we have uncovered are reminiscent of
instabilities of anisotropic weakly coupled plasmas [8].
Somewhat pictorially, the main similarity is the tendency
to ‘filamentation’, which in weakly coupled plasmas can
be understood (very roughly) as the tendency of simi-
larly oriented currents to cluster together. We emphasize
though that there are obvious differences. In a weakly
coupled plasma the anisotropy is ‘dynamical’ since it
arises from the momentum distribution of the particles
that compose the plasma. In contrast, in our case the
plasma is static and intrinsically anisotropic because of
the presence of dissolved extended objects. In any case,
we stress that whether a real connection exists between
the instabilities studied here and those of weakly coupled
plasmas is a question beyond the scope of this letter.

The instabilities of our solution are also reminiscent of

FIG. 1: (Left) Entropy density as a function of a/T . (Center) Energy and pressures as functions of T/a for fixed a ' 2.86 and
logµ = 1/2. (Right) Qualitative phase diagram.

It follows that the homogeneous phase with uniform
D7-brane density is in stable thermal equilibrium in Zone
III. In particular, as can be seen from the positive slope
of the continuous red curve in Fig. 1(center), the specific
heat is ca > 0 everywhere. Also, the pressures and the
energy are all monotonically increasing functions of T at
fixed a, so the speed of sound in all directions is real and
positive. There are no thermal instabilities anywhere in
the phase diagram.

In contrast, the homogeneous phase is in unstable ther-
mal equilibrium against infinitesimal charge fluctuations
in Zone I, where the second condition in (7) is violated. In
Zone II the system is in metastable thermal equilibrium,
since it is unstable only against finite charge fluctuations:
the pressure in the z-direction is smaller than the pres-
sure of the isotropic phase, and thus bubbles of isotropic
phase can form and grow, forcing a compression of the
charge in the z-direction [24]. In other words, in Zones
I and II a carefully prepared homogeneous system with
initial (a, T ) will fall apart into a mixed phase consisting
of high-density anisotropic ‘droplets’ or ‘filaments’ sur-
rounded by isotropic regions [25]. The local charge den-
sity a′ > a will be the same in each of the droplets, and
the pressure will exactly equal that of the isotropic phase
at the same final temperature, P‖(a′, T ′) = P 0(T ′). The
pair (a′, T ′) therefore lies on the continuous blue curve
of the phase diagram.

In Landau’s theory of phase transitions the homoge-
neous phase in Zones I, II and III would be described by
a saddle point of the free energy with at least one unsta-
ble direction, by a metastable local minimum, and by a
stable global minimum, respectively.

6. Discussion. Our system is in anisotropic thermal
equilibrium. This is not surprising, since in the gauge
theory isotropy is broken explicitly by an anisotropic
external source. The string description makes it clear
that the resulting system can be thought of as a fluid
with a conserved, isotropy-beaking, two-brane charge
(see e.g. [11]).

It is remarkable that our solution is completely regular
despite the fact that it incorporates the full backreaction

of the D7-branes, whose number scales as nD7 ∼ Nc/λ.
Relatedly, we note that the parameter controlling their
backreaction, λnD7/Nc, is coupling-enhanced as in the
case [18] of flavour D7-branes.

The physics in Zones I and II shares some similarities
with that of QCD at low T and finite baryon density
[19]. In that case the pressure of a chirally broken homo-
geneous phase with density lower than a critical density
n0 is negative (except in a tiny region of very small densi-
ties). This indicates an instability towards the formation
of ‘droplets’ of higher density n0 in which P = 0 and
chiral symmetry is restored, surrounded by empty space
with n = 0 and P = 0. In our case, the role of the chirally
restored phase is played by the anisotropic phase, the
analogue of n0 is a0 (see Fig. 1(right)), and the ‘droplets’
correspond to the regions of non-zero D7-brane density.
These similarities suggest that the transition from the
mixed phase to the homogeneous phase may occur via a
percolation mechanism, as in some QCD models [20] of
chiral symmetry restoration [26].

The instabilities we have uncovered are reminiscent of
instabilities of anisotropic weakly coupled plasmas [8].
Somewhat pictorially, the main similarity is the tendency
to ‘filamentation’, which in weakly coupled plasmas can
be understood (very roughly) as the tendency of simi-
larly oriented currents to cluster together. We emphasize
though that there are obvious differences. In a weakly
coupled plasma the anisotropy is ‘dynamical’ since it
arises from the momentum distribution of the particles
that compose the plasma. In contrast, in our case the
plasma is static and intrinsically anisotropic because of
the presence of dissolved extended objects. In any case,
we stress that whether a real connection exists between
the instabilities studied here and those of weakly coupled
plasmas is a question beyond the scope of this letter.

The instabilities of our solution are also reminiscent
of the phenomenon of cavitation, i.e. the formation of
bubbles of vapour in regions of a flowing liquid in which
the pressure of the liquid drops below its vapour pres-
sure. Cavitation has been proposed [21] (see also [22])
as a mechanism that would lead to fragmentation of the
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QGP into droplets that would subsequently evaporate,
thus providing a new scenario for how hadronization is
achieved. In that context the analogue of vapour pressure
is the pressure of the vacuum, P = 0, whereas in ours it
is the pressure of the isotropic phase. As above, how-
ever, we emphasize that in the case of [21] the pressure
drop is due to a dynamical effect, namely to the viscosity
corrections that result from the expansion of the plasma.
In contrast, in our case this is a static effect presumably
resulting from the interaction of the extended objects in
the plasma.

Note that an instability discovered in [12] does not
directly apply here, since Lifshitz (instead of AdS) boun-
dary conditions were assumed in [12].
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