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Abstract

A fundamental understanding of cell-nanomaterial interaction is of essential importance to

nanomedicine and safe applications of nanotechnology. Here we investigate the adhesive wrap-

ping of a soft elastic vesicle by a lipid membrane. We show that there exist a maximum of five

distinct wrapping phases based on the stability of full wrapping, partial wrapping and no wrapping

states. The wrapping phases depend on vesicle size, adhesion energy, surface tension of membrane,

and bending rigidity ratio between vesicle and membrane. These results are of immediate interest

to the study of vesicular transport and endocytosis/phagocytosis of elastic particles into cells.

PACS numbers: 87.16.D-, 46.70.Hg, 87.17.Aa, 87.17.Rt

1



Although rapid progresses have been made in understanding the effects of size and shape

on particle uptake into cells [1, 2], relatively little is known about the corresponding effect of

particle elasticity. Recent experiments have given mounting evidence on the importance of

elastic deformation in cellular uptake of nanoparticles. For example, it has been found that

macrophages are unable to phagocytose very soft targets, which has profound implications on

the functioning of immune system [3]. Flexible erythrocytes can be strongly distorted during

phagocytosis due to strong interactions between cell membrane and soft particles/vesicles

[4]. Beningo and Wang [5] have shown that phagocytosis of soft microparticles can be hin-

dered by particle deformation. Murine leukemia virus (MLV) and human immunodeficiency

virus (HIV) particles regulate their mechanical properties at different stages of the life cycle

through internal morphological reorganization [6]: Immature HIV viral particles are rela-

tively stiff for budding out of a host while mature HIV particles are substantially softer

for entry into a host [6]. Flexible micelles can circulate for prolonged periods in the blood

stream due to their flexible structures, allowing them to deliver drugs to target tumor cells

more efficiently [7]. In drug delivery, softer, more flexible particles are expected to inhibit

phagocytosis, leading to longer lifetime of particles in the circulation. Although the detailed

mechanisms of cellular uptake remain to be fully elucidated and can vary in different cases, a

general fact has been established that cellular uptake of nanoparticles is strongly influenced

by their elastic properties. This calls for studies aimed at understanding the effect of elastic

deformation of particles on cellular uptake.

Here we present the first theoretical model on the adhesive wrapping of an elastic, de-

formable vesicle by a lipid membrane, for a range of bending rigidity ratio between the vesicle

and membrane. Using theoretical analysis and molecular simulations we will show how the

wrapping degree depends on the vesicle size, the adhesion energy, the surface tension of the

membrane, and the bending rigidity ratio. We will determine the phase diagrams for cellular

uptake of three-dimensional axisymmetric (3D) and two-dimensional (2D) particles, probing

the transitions between full wrapping, partial wrapping and no wrapping states. We will

also discuss possible implications of our results on relevant biological processes.

Note that there can be a number of alternative models for an elastic particle. Here

we model the engulfed particle as an elastic vesicle with a constant total surface area At.

Consider such a vesicle wrapped by an initially flat membrane with elastic deformation in

both the vesicle and the membrane, as shown in Fig. 1(a). The total energy of the system
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can be described by the Canham-Helfrich Hamiltonian as [8–11]

E =
∑

i=1,2,3

∫

(

2κiM
2 + κgiG

)

dAi +∆PV + σ∆A− γA3 + ΓAt, (1)

where M is the mean curvature, G is the Gaussian curvature, κi and κgi are the bending

and Gaussian moduli of the three regions, respectively; ∆P = Pout − Pin is the pressure

difference between the outside and inside of the vesicle; V is the volume of the vesicle;

σ is the surface tension of the membrane which is conjugated with the excess area ∆A

induced by wrapping; γ is the specific adhesion energy and A3 is the contact area. The

last term arises from the constraint that the surface area At is fixed, Γ being the Lagrange

multiplier. Although not considered in our model, a spontaneous curvature can be readily

included in the formulation. Hereafter we use subscripts 1, 2 and 3 to identify quantities

associated with the inner free, outer free and the wrapped regions, respectively. To simplify

our description, we assume that the Gaussian modulus of the adhesion region is κg
3
= κg

1
+κg

2
,

which implies that the Gaussian curvature does not affect the vesicle shape due to the Gauss-

Bonnet theorem [12]. We will further assume κ3 = κ1 + κ2 throughout the analysis, while

recognizing important exceptions such as the formation of clathrine or caveolin coats during

the wrapping process. All length scales are scaled by the effective radius of the vesicle

a =
√

At/(4π). In two dimensions, the vesicle length Lt remains constant and the effective

radius is a = Lt/(2π). Other dimensionless parameters are γ̄ = 2γa2/κ2, σ̄ = 2σa2/κ2,

η = 2Γa2/κ2 and p = ∆Pa3/κ1.

The axisymmetric shapes in Fig. 1(a) are determined from the tangent angle ψ(s) with

geometric relations ṙ = cosψ and ż = sinψ, where dots denote derivatives with respect to

the rescaled arclength s of the vesicle or to arclength t of the outer free part of the membrane.

For the axisymmetric configuration, variation of the energy functional in Eq. (1) gives rise

to the following governing equation for the vesicle shape

ψ̈ = −
ψ̇2 tanψ

2
−
ψ̇ cosψ

r
+

cos2 ψ + 1

2r2
tanψ +

κ2
2κi

(η + σ̄ − γ̄) tanψ +
κ1
2κi

pr

cosψ
(2)

for the wrapped region of the vesicle. The same equation with σ̄ and γ̄ removed would hold

for the inner free region of the vesicle [13]. The equations that govern the shape of the

outer free part of the membrane can be found in Ref. [11] and are listed in supplementary

information [14] for the convenience of the reader. For the two-dimensional configuration,

the corresponding shape equations of the vesicle are κiψ̈/κ1 = µ sinψ + pr cosψ (i = 1, 2)
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FIG. 1. (color online). Schematic of an elastic vesicle wrapped by an initially flat membrane. (a)

The geometry of the system with wrapping angle α and tangent angle ψ. Arclengths s and t are

defined along the vesicle and along the outer free part of the membrane, measured from the bottom

pole (s = 0) and the adhesion edge t = 0 (s = s1), respectively; r0 is the r(s) coordinate at s = s1.

(b) Schematic of the three characteristic wrapping states. No wrapping is the state with zero

contact area. Full wrapping is the state in which the left and right sides of the membrane touch

each other on the top of the vesicle. Partial wrapping corresponds to the intermediate scenario

with incomplete wrapping.

and µ̇ = p sinψ [10], and the shape equation of the outer free membrane is ψ̈ = σ̄ sinψ/κ2

[15]. The boundary conditions are ψ3(0) = 0 and r3(0) = 0 at s = 0, and ψ1(s2) = π and

r1(s2) = 0 at s = s2. The remote boundary conditions are lim
t→∞

ψ2(t) = 0 and lim
t→∞

ψ̇2(t) = 0

as t→ ∞, which enforce the asymptotic flatness of the membrane at large distances [11]. At

the adhesion edge s = s1, the radial coordinate r and tangent angle ψ must be continuous,

and the variation of energy E yields the following boundary conditions

κ1ψ̇
2

1
+ κ2ψ̇

2

2
− κ3ψ̇

2

3
= 2γa2,

κ1ψ̇1 + κ2ψ̇2 − κ3ψ̇3 = 0,
(3)

which represent the balance of tangential force and torque at s = s1 [16]. Eq. (3) reduces to

ψ̇2(s1) = ψ̇3(s1) and ψ̇1(s1)− ψ̇2(s1) =
√

2γa2/κ1 in the limit κ2 → ∞, which coincides with

the corresponding condition for a vesicle on a flat/curved rigid substrate [10, 17] or a rigid

particle wrapped by a lipid membrane [11, 18]. In addition, the condition for the balance of
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normal force at s = s1 is [16]

κ1ψ̈1 + κ2ψ̈2 − κ3ψ̈3 = 0. (4)

The equilibrium configurations of the vesicle and membrane can be found numerically by

solving Eq. (2) with continuity and boundary conditions in Eqs. (3) and (4). These boundary

conditions are only valid in the equilibrium state. To calculate the energy at any given value

of the wrapping degree f = A3/At which may not be in equilibrium, the balance equations

Eqs. (3) and (4) do not hold. In that case we vary the values of r0(∈ [0, s1]) and α with a

step size 0.0005 in r0 and 0.001 in α for a given f , obtain solutions by the shooting method

and then determine the shapes of the vesicle and membrane from solution with the lowest

energy. An equilibrium state corresponds to a local extremum of free energy as f increases

from 0 to 1. Numerical results show that the boundary conditions in Eqs. (3) and (4) are

indeed satisfied in equilibrium states [14]. The effect of pressure difference on the wrapping

phases is rather minor in 2D and negligible in 3D [14], and is therefore neglected in the

following analysis. A similar method has been used to study the axisymmetric equilibrium

shapes of erythrocytes considering vesicle-vesicle adhesion [19].

We now investigate the effects of bending modulus ratio κ1/κ2 and normalized adhesion

energy γ̄ on the stability of different wrapping states. Fig. 2 shows the energy change

∆E = E −E0 as a function of the wrapping degree f , where E0 is the ground state energy

taken as 8πκ1 for a spherical vesicle and πκ1/a for a circular vesicle. Fig. 2(a) shows

that there exist three phases in 2D. For relatively small adhesion energy, the bending energy

dominates the wrapping process and full wrapping cannot happen. As γ̄ increases, the stable

wrapping state changes from no wrapping to partial wrapping then to full wrapping. For

γ̄ = 10, the global minimum is f = 1 for κ1/κ2 ≥ 1 and f < 1 for κ1/κ2 = 0.1. This means

that larger adhesion energy is needed for a softer vesicle to be fully engulfed. Compared to

the 2D case, the axisymmetric configuration exhibits five possible phases (I-V) as introduced

in Ref. [11] (see Fig. 2(b)). In phase I, γ̄ is low and ∆E increases monotonically with f .

As γ̄ increases, there exists a stable state (no wrapping) and a metastable partial wrapping

state and phase II arises. Further increase of γ̄ results in a global minimum at a partial

wrapping state with an energy barrier to reach the metastable full wrapping state (phase

III). With increasing γ̄ the stable partial wrapping state becomes metastable with respect

to a stable full wrapping state (phase IV). If γ̄ is large enough, the energy barrier vanishes
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and the full wrapping state becomes the only stable state in phase V. For each phase, there

is a stable state (global energy minimum) and possibly a metastable state (local energy

minimum). For very soft particles (e.g., κ1/κ2 < 1), the phase II′ no longer has no wrapping

as the stable state and partial wrapping as a metastable state; instead the no wrapping state

becomes unstable while partial wrapping becomes stable. There are three cases of possible

energy evolution profiles as a function of the wrapping degree. Case 1 exhibits a global

energy minimum at a relatively small f and possibly a metastable state at a relatively large

f ; case 2 shows a global minimum at a relatively large f and a possible metastable state at

a relatively small f ; case 3 has only one global minimum at large f [14]. The boundaries

between these cases correspond to the thin (dash-dotted and solid) lines in Fig. 3(d) and

(e). Fig. 2(c) and (d) show sequences of vesicle-membrane configurations in 2D and 3D at

σ̄ = 2 for different rigid ratios κ1/κ2.

With the knowledge of energy functions for κ1/κ2, σ̄ and γ̄, the phase diagrams of wrap-

ping have been calculated and shown in Fig. 3. Note that the solution at f = 1 is unphysical

since in that case two opposing parts of the membrane on top of the particle will have crossed

each other. Therefore, the state of full wrapping needs to be carefully defined (Fig. 1(b)).

In the 2D case, the shape equation for the outer free part of the membrane associated with

a given wrapping angle α can be derived analytically as ψ2 = 4 arctan[tan α

4
exp (−t

√

σ̄/2)],

where t is the rescaled arclength of the outer free part [15]. With the relation ṙ = cosψ, the

r(t) coordinate can be determined as

r(t) = r0 + t +

√

2

σ̄

(1− e
√
2σ̄t)(1− cosα)

1− cos α

2
+ e

√
2σ̄t

(

1 + cos α

2

) . (5)

For a given set of r0, α and σ̄, the minimum of r(t) can be determined. The full wrapping

condition is found from the condition that the minimum of r(t) is equal to zero as shown

in Fig. 3(a). The critical condition for a rigid circular particle to be fully wrapped by a

membrane is then given by [18]
√

σ̄

2
sinα =

√
2− 2 cos

α

2
+ ln

(

tan
π

8

)

− ln
(

tan
α

4

)

, (6)

with α = arccos [1− (1−
√
γ̄)2/σ̄]. The derivation of Eq. (6) is based on the assumption

that the full wrapping state is a stationary state with zero slope along the energy evolution

curve as a function of wrapping degree, which is true for large κ1/κ2 or small κ1/κ2 with

large σ̄. For small κ1/κ2 with small σ̄, the full wrapping state has the lowest energy but
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FIG. 2. (color online). Energy change ∆E as a membrane wraps around a particle with wrapping

degree f for different γ̄ and κ1/κ2 with σ̄ = 1. (a) Two-dimensional case, and (b) three-dimensional

case. Scatters in (a) are results from molecular simulations [14]. In general, there exist 5 distinct

wrapping phases in 3D. Plots shown in (b) show that, under the selected parameters, there are

2 stable (I, V) and 3 metastable phases (II-IV). Among the 3 metastable phases, the underlined

wrapping states in (b) are the ones with lower energy. (c) 2D and (d) 3D solutions to selective

wrapping configurations at σ̄ = 2 for different particle-membrane rigidity ratios κ1/κ2.

the corresponding slope of the energy profile does not vanish [14]. Fig. 3(a) shows that a

minimum adhesion energy γ̄min is necessary for partial wrapping. The softer the vesicle is,

the smaller γ̄min is. For a rigid circular particle, γ̄min = 1 [18]. As κ1/κ2 decreases, γ̄ needs

to increase to maintain the full wrapping state. When σ̄ ≤ 0.5, there are small differences

between the transition lines from the state of partial wrapping to full wrapping for different

κ1/κ2. As σ̄ increases, the differences become large and strikingly sensitive to κ1/κ2.

Since there is no analytical expression for r(t) in the 3D case, we take f = 1 as the full

7



wrapping condition for simplicity. For a rigid spherical particle, γ̄min = 4 [11]. There is no

phase II for κ1/κ2 = 1 and 0.1 since the adhesion energy can compensate for the bending

energy at the initial wrapping process for small κ1/κ2 (Fig. 3(d) and (e)). The effects of

κ1/κ2 on the phase transition is very small when κ1/κ2 ≥ 1 but large for very soft vesicles

(κ1/κ2 = 0.1). A general result from Fig. 3 is that stiffer particles require lower adhesion

energy for wrapping. Comparison with Fig. 3(a) indicates that γ̄min is larger in 3D than in

2D for a given κ1/κ2, since the bending energy density is larger in 3D. For a given κ1/κ2,

the critical value of γ̄ for full wrapping is larger in 3D when σ̄ is small (σ̄ < 1 for κ1/κ2 ≥ 1,

σ̄ < 0.5 for κ1/κ2 = 0.1). When σ̄ exceeds a certain value, the critical value of γ̄ for full

wrapping in 3D becomes smaller, indicating that the uptake of a two-dimensional particle

could not be accomplished even if full wrapping becomes possible in three-dimension. In

such cases, spherical particles can be absorbed when cylindrical ones cannot.
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FIG. 3. (color online). Wrapping phase diagrams with respect to normalized adhesion energy γ̄

and surface tension σ̄ at different values of the rigidity ratio κ1/κ2. (a) 2D case, dashed lines:

boundaries between no wrapping and partial wrapping states, solid lines: boundaries between

partial and full wrapping states. (b-e) 3D cases for κ1/κ2 = ∞, 5, 1, 0.1, dotted lines: boundaries

between phases I and II(II′), dashed lines: boundaries between phases II(II′) and III(III-V for

κ1/κ2 = 1, 0.1), dash-dotted lines: boundaries between phases III and IV, solid lines: boundaries

between phases IV and V. Symbols in (a) denoting transition boundaries between the partial and

full wrapping states are from molecular simulations [14].
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The phase diagrams shown in Fig. 3 may have broad implications for endocytosis/phagocytosis

and drug/gene delivery processes. If the adhesive interaction between a particle and mem-

brane is not strong enough, it will be difficult for the cell membrane to engulf a very soft

particle. To achieve the full wrapping state and engulf the particle, the bending modulus of

the particle needs to increase. Protein coating formation and actin polymerization beneath

the membrane are effective methods to increase bending modulus of the particle. For exam-

ple, binding of clathrin-associated proteins leads to a significant increase in the rigidity of

clathrin-coated vesicles which is about 20 times that of the vesicle membrane alone [20]. For

streptavidin- and avidin-coated vesicles κ1 ≈ 320kBT and κ1 ≈ 115kBT , respectively, which

are much larger than bare SOPC/capBio-DOPE vesicles with κ1 ≈ 10kBT [21]. The actin

concentration inside the phagocytic cup has been estimated to increase the local stiffness by

a factor of 5 [22]. The phase diagrams in Fig. 3 provide a possible alternative view on why

clathrin and other protein coatings as well as actin polymerization are involved in many

endocytosis/phagocytosis processes.

Macrophages have a preference to engulf rigid targets with more actin filaments concen-

trated beneath stiffer particles [5]. In some cases, infected macrophages are drug targets;

while in other cases, macrophages are not target cells but act as barriers by phagocytosis

preventing particles from releasing their therapeutic cargos near or within target cells [23].

Fig. 3 demonstrates that uses of soft particles and cylindrical particles can postpone or

prevent uptake. An alternative method is to increase the bending modulus of the cell mem-

brane. For three-dimensional particles, the effects of particle elasticity on cellular uptake is

only evident when κ1 < κ2. Worm-like viruses and particles with very high aspect ratios

[2] may be considered two-dimensional vesicles. For these types of particles, controlling the

particle stiffness can be essential for controlling cellular uptake. Many particles can be used

as soft drug delivery particles such as polymer particles, nanocapsules and nanogel with high

water content. The elasticity- and geometry-induced inhibition of cellular uptake will have

important applications in the use of those particles as drug delivery carriers.

Experiments show that MLV and HIV particles are stiff during viral budding out of the

host and soften during entry activities [6]. For these viral particles, entry into cell often

involves endocytosis and membrane fusion, in which case full wrapping is not necessary

for the uptake process. In contrast, the budding process involves no membrane fusion and

requires full wrapping, so that the stiffness of the particle can be expected to play a more
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important role. However, softer particles experience smaller energy changes during the

wrapping process (see Fig. 2(a) for 2D cases) which might be preferred in case full wrapping

is not required. These results provide feasible explanations why viral particles harden right

before budding and then soften again in the uptake stage [6].

Our analysis suggests that the reason why soft particles are less prone to wrapping than

stiff ones could be understood as follows. For a rigid particle, the adhesive interaction be-

tween the particle and membrane simply forces the membrane to deform and wrap around

the particle. In contrast, Figs. 2(c) and (d) show that for a soft particle, the deformation

is partitioned between the particle and the membrane at different stages of wrapping. A

very soft particle would initially spread along the membrane without significant membrane

deformation. Only at a later stage will the membrane be forced to bend around the parti-

cle. Thus, wrapping around a rigid particle involves a gentler rise in elastic energy in the

membrane as more membrane area deforms around the particle. When wrapping around a

soft particle, the membrane does not deform initially but then needs to catch up to almost

the same configuration at full wrapping. This means more abrupt rise in elastic energy at

the later stage of wrapping and, consequently, larger adhesion energy would be required to

balance the more rapid rise in elastic energy. Since it is this partition of deformation at the

early stage of wrapping that hinders the full wrapping of a soft particle, alternative particle

models, such as a particle with a bulk elastic modulus or a thin-shell with shear rigidity, are

not expected to change this basic feature of particle-membrane interaction. Therefore, we

believe the conclusions of our study should be generic and not specific to the present vesicle

model.

In this Letter, we have performed both theoretical analysis and molecular simulations

to study the cellular uptake of elastic nanoparticles. Using variational methods and free

energy functional for cell membrane wrapping around elastic cylindrical (2D) or spheri-

cal particles (3D), we have calculated the associated phase diagrams describing transition

boundaries between different wrapping phases. We find that stiffer particles can achieve full

wrapping more easily than softer particles, while softer particles experience smaller energy

changes during wrapping and might be more favorable in case full wrapping is not neces-

sary. The cellular uptake of particles is strongly dependent on the particle size, shape and

physicochemical properties of particles [1, 2, 24]. Our results suggest that precise control of

the particle elasticity can be another appealing way to control cellular uptake. The present
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model can be extended to problems such as phase separations and assembly of programmable

soft materials.
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