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Recent experiments have observed bulk superconductivity in doped topological insulators. Here
we ask whether vortex Majorana zero modes, previously predicted to occur when superconductivity
is induced on the surface of topological insulators, survive even in these doped systems with metallic
normal states. Assuming inversion symmetry, we find that Majorana zero modes indeed appear but
only below a critical doping. The critical doping is associated with a topological phase transition
of the vortex line, where it supports gapless excitations along its length. The critical point depends
only on the orientation of the vortex line, and a Berry phase property, the SU(2) Berry phase
of the Fermi surface in the metallic normal state. By calculating this phase for available band
structures we determine that materials candidates like p-doped Bi2Te3 under pressure supports
vortex end Majorana modes. Surprisingly, even superconductors derived from topologically trivial
band structures can support Majorana modes, providing a promising route to realizing them.

Majorana fermions, defined as fermions that are their
own anti-particles unlike conventional Dirac fermions
such as electrons, have long been sought by high energy
physicists, but so far in vain. Of late, the search for Majo-
rana fermions has remarkably shifted to condensed mat-
ter systems [1–3], especially, to superconductors (SCs),
where states appear in conjugate pairs with equal and
opposite energies. Then, a single state at zero energy is
its own conjugate and hence, a Majorana state or a Ma-
jorana zero mode (MZM). These states are immune to
local noise and hence, considered strong candidates for
storing quantum information and performing fault tol-
erant quantum computation [4]. Moreover, they show
non-Abelian rather than Bose or Fermi statistics which
leads to a number of extraordinary phenomenon [5].

Despite many proposals direct experimental evidence
for a MZM is still lacking. While initial proposals in-
volved the ν = 5/2 quantum Hall state and SCs with
unconventional pairing such as px + ipy [3], a recent
breakthrough occurred with the discovery of topologi-
cal insulators (TIs) [6], which feature metallic surface
bands. When a conventional s-wave SC is brought near
this metallic surface, a single MZM is trapped in the
vortex core [7]. Since then, several TIs were found to
exhibit bulk superconductivity on doping [8] or under
pressure [9, 10]. The normal phase of these SCs is now
metallic, which raises the question: can a SC vortex host
a surface MZM even when the bulk is not insulating?

In this Letter, we answer this question in the affir-
mative and in the process, discover a convenient way to
obtain a MZM, which allows us to conclude that some ex-
isting experimental systems should possess these states.
Our proposal involves simply passing a magnetic field
through a TI-based SC, such as superconducting Bi2Te3,
in which the doping is below a certain threshold value.
We also find general criteria for SCs to host vortex MZMs
and show that some non-TI-based SCs satisfy them too.

A heuristic rule often applied to answer the above ques-
tion is to examine whether the normal state bulk Fermi

surface (FS) is well separated from surface states in the
Brillouin zone. If it is, MZMs are assumed to persist in
the bulk SC. While this may indicate the presence of low
energy states, it is not a topological criterion since it de-
pends on non-universal details of surface band structure,
and cannot signal the presence of true MZMs. For MZMs
to disappear, a gapless channel must open that allows
pairs to approach each other and annihilate. We there-
fore search for and offer a bulk rather than surface cri-
terion. In this process, we have uncovered the following
interesting facts. We assume inversion (I) and time re-
versal (T ) symmetric band structures, and weak pairing,
since these lead to a technical simplification and capture
many real systems. (i) The appearance of surface MZMs
is tied to the topological state of the vortex, viewed as
a 1D topological SC. The critical point at which they
disappear is linked to a vortex phase transition (VPT)
where this topology changes. If verified, this may be the
first instance of a phase transition inside a topological
defect. (ii) The topological state of a vortex depends in
general on its orientation. (iii) Symmetry dictates that
the normal state FS is doubly degenerate, leading to an
SU(2) non-Abelian Berry phase [11] for closed curves,
which determines the condition for quantum criticality of
the vortex. This is a rare example of a non-Abelian Berry
phase directly influencing measurable physical properties
of an electronic system. Spin-orbit coupling is essential
to obtaining the SU(2) Berry Phase. (iv) Using this cri-
terion and available band structures we find that MZMs
occur in p-doped superconducting Bi2Te3 [10] and in Cu-
doped Bi2Se3 [8] if the vortex is sufficiently tilted off the
c-axis. C-axis vortices in Cu-doped Bi2Se3 are predicted
to be near the topological transition.

The Problem: Consider a 3D insulating band structure
H , which we dope by changing the chemical potential µ
away from the middle of the band gap. Now, add conven-
tional ‘s-wave’ even parity pairing ∆ (in contrast to the
p-wave pairing of Ref. [12]) and introduce a single vortex
line into the pairing function ∆(r), stretching between



2

the top and bottom surfaces. We neglect the effect of
the magnetic field used to generate the vortices, assum-
ing extreme type II limit. When H is a strong TI, and µ
is in the band gap, the pair potential primarily induces
superconductivity on the surface states. In this limit it
is known [7] that MZMs appear on the surface, in the
vortex core. [13] Now consider tuning µ deep into the
bulk bands. By modifying states well below µ, one could
tune the band structure to one with uninverted bands.
One now expects ‘normal’ behavior, and the absence of
MZMs. Therefore, a quantum phase transition must oc-
cur between these limits and µ = µc.

To understand the nature of the transition, we recall
some basic facts of vortex electronic structure, which
are also derived below. Once µ enters the bulk bands,
low energy Caroli-de Gennes-Matricon excitations ap-
pear, bound to the vortex line [14]. These excitations are
still typically gapped, although by a small energy scale,
the ‘mini-gap’: δ ∼ ∆/(kF ξ), (where kF is the Fermi
wave-vector and ξ is the coherence length. In the weak
pairing limit kF ξ ≫ 1). This small energy scale arises
because the gap vanishes in the vortex core leading to a
droplet of normal fluid, which is eventually gapped by the
finite vortex size. However, the presence of the minigap
is important, since it blocks the tunneling of the surface
MZMs into the vortex line, and confines them near the
surface. The closing of the mini-gap allows the surface
MZMs to tunnel along the vortex line annihilate.

Vortex as a 1D topological SC: The VPT may be
viewed as a change in the topology of the electronic struc-
ture of the vortex line. The relevant energy scale is of
the order of the mini-gap δ ≪ ∆, with excitations lo-
calized within the 1D vortex core. The vortex admits
particle-hole symmetry (C) but breaks T -symmetry and
hence, belongs to class D of the Altland-Zirnbauer clas-
sification [15]. Thus, the problem reduces to classifying
gapped phases in 1D within the symmetry class D, which
are known to be distinguished by a Z2 topological invari-
ant [1]. The two kinds of phases differ in whether they
support MZMs at their ends. The topologically nontriv-
ial phase does and hence, corresponds to the µ < µc

phase of the vortex line. On raising µ, the vortex line
transitions into the trivial phase, via a quantum critical
point at which it is gapless along its length. This is remi-
niscent of recent proposals to generate MZMs at the ends
of superconducting quantum wires [16]. Note, since there
is no ‘local’ gap in the vortex core, the powerful defect
topology classification of [17] cannot be applied.

The Hamiltonian is H = 1

2

∑

k
Ψ†

k
HBdG

k
Ψk where

Ψ†
k

= (c†
k↑, c

†
k↓, c−k↓, −c−k↑) and c

†
kσ is assumed to

have a = 1 . . .N orbital components c†
kσa and

HBdG
k =

[

Hk − µ ∆
∆∗ µ−Hk

]

. (1)

where scalars like µ and ∆ multiply the identity matrix

12N×2N . The band Hamiltonian, Hk, is a 2N × 2N ma-
trix with T symmetry: σyH

∗
−k

σy = Hk, where σy acts on
the spin, which yields the Hamiltonian structure above.
When I-symmetry is also present, Hk will be doubly
degenerate, since the combined operation T I leads to
a Kramers pair at every momentum. HBdG

k
has parti-

cle hole symmetry implemented by the transformation
C = ΠyσyK, where Π matrices act on Nambu particle-
hole indices, and K is complex conjugation. A vortex
given by ∆(r) = |∆(r)|e−iθ , breaks T but preserves C.

Role of vortex orientation: Consider a straight vortex
along ẑ. The dispersion E(kz) in general, has a minigap
δ as in Fig. 1. A topological phase transition requires
closing of the minigap and reopening with inverted sign.
Since the Z2 topological index is only changed by an odd
number of such band crossings, the only relevant mo-
menta are kz = 0, π. Band touchings at other kz points
occur in pairs at ±kz which do not alter the Z2 index [1].
In the weak pairing limit, one expects the critical point
µc to be determined by a FS property, which will be out-
lined in detail below. Here we simply observe that the
relevant FSs to consider lie in the kz = 0, π planes, the
planes determined by the vortex orientation. This im-
plies that the topological phase of the vortex, and hence
µc depend in general on its orientation.

VPT in a lattice model: Before discussing the gen-
eral criterion for a VPT, we present numerical and ana-
lytical evidence in a specific lattice model from Ref. [18].
While the numerics explicitly demonstrate the phase
transition, the analytical treatment of the continuum
limit allows us to conjecture a Berry phase condition
for the transition, which is later proved. The model
is on a simple cubic lattice with two orbitals per site:
H latt

k
= τxdk · σ+mkτz − µ where τi (σi) are Pauli ma-

trices in the orbital (spin) basis, di
k

= 2t sin ki, mk =
(M +m0

∑

i cos ki), i = x, y, z, and t, m0 and M are pa-
rameters of the model and µ is the chemical potential.
The model is in the strong TI phase if −3 < M

m0

< −1.
We add a mean field s-wave pairing to this Hamiltonian,
insert a unit winding into the pairing function and diago-
nalize the Hamiltonian numerically. We focus on kz = 0.

Numerical results: Fig. 1 illustrates the evolution of
the bulk vortex bound states, the dispersion within the
vortex and the surface MZMs as a function of µ, when
the normal state has a band inversion only at the Γ =
(0, 0, 0)-point, i.e., mΓ < 0. At µ = 0, the bulk is gapped
and must have a pair of MZMs on opposite surfaces in a
slab geometry. As µ is raised, these MZMs leak deeper
into the bulk, but survive even after µ crosses |mΓ| de-
spite the bulk now having a FS in the normal phase,
gapped by superconductivity. A VPT eventually occurs
at µc = 0.9, at which the vortex is gapless and the sur-
face MZMs merge into vortex line. Beyond µc, there are
no longer any protected MZMs on the surface.

Continuum limit: In the continuum limit of the lattice
model, we can analytically calculate µc. For kz = 0 and
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Figure 1. The vortex phase transition. Evolution of the low-
est bulk/vortex states at kz = 0 (top row), of the dispersion
within the vortex (middle row) and of the surface MZMs (bot-
tom row) as µ is varied when the normal phase has a band
inversion at Γ. At µ = 0, the normal phase is a strong TI
and a superconducting vortex traps a MZM at its ends. As µ
is increased, it first enters the conduction band at µ = |mΓ|
and mid-gap states appear inside the vortex. For µ < µc, the
vortex stays gapped, but with a minigap δ smaller than the
bulk gap. The MZMs remain trapped near the surface. At
µc = 0.9, the gap vanishes signalling a phase transition. Be-
yond µc, the vortex is gapped again, but there are no surface
MZMs. We used the lattice Hamiltonian with the parameters
t = 0.5, M = 2.5 and m0 = −1.0. The pairing strength is
∆0 = 0.1 far away from the vortex and drops sharply to zero
at the core. Other gap profiles give similar results.

small kx,y around Γ, H latt
k

reduces to the isotropic form
Hk = vDτxσ · k+ (m− ǫk2)τz − µ. In this form, a band
inversion exists if mǫ > 0. Thus, mǫ < 0 (> 0) defines a
trivial insulator (strong TI). At k =

√

m/ǫ, mk = m−ǫk2

vanishes and Hk resembles two copies of a TI surface. In
particular, the Berry phase around each τx = ±1 FS is
π. We show later that this leads to a pair of vortex zero
modes, signaling the VPT at µc = vD

√

m/ǫ.

We solve analytically for the two bulk zero modes at µ
to first order in ∆0 assuming |∆(r)| = ∆0Θ(r−R), where
Θ is the step-function and µR/vD ≫ 1. Calculating the
zero modes separately for r ≤ R and r ≥ R and matching
the solutions at r = R gives a pair of zero modes, only
when µ = vD

√

m/ǫ, for all vortex orientations. This is
precisely where the momentum dependent ‘mass’ term

changes sign [19]. Using the model parameters and the
linearized approximation gives an estimate of µc ≈ 1, in
agreement with the lattice numerics.

General Fermi surface Berry phase condition:
For weak pairing, the VPT is expected to be governed
by properties of the bulk FS. For concreteness, we begin
by assuming we have a single FS in the kz = 0 plane,
which will be doubly degenerate due to the combined
symmetry T I. We now argue that the VPT occurs when
an appropriately defined Berry phase for each of the two
degenerate bulk FSs is π.

A convenient model for the vortex is ∆(r) = ∆0

ξ
(x −

iy). The linear profile here simplifies calculations, but
does not affect location of the zero mode. The choice of
ξ as the length scale gives the right minigap scale for the
low energy excitations. Working in momentum space, we
substitute r by i∂k, which gives

HBdG
k =

[

Hk − µ i∆0

ξ
(∂kx

− i∂ky
)

i∆0

ξ
(∂kx

+ i∂ky
) µ−Hk

]

, (2)

transforming now to the band basis |ϕν
k
〉, which are eigen-

states of the band Hamiltonian Hk|ϕk〉 = E|ϕk〉. Since
we are only interested in very low energy phenomena, we
project onto the two degenerate bands near the Fermi
energy ν = 1, 2. The projected Hamiltonian then is:

H̃BdG
k

=

[

Ek − µ i∆0

ξ
(Dkx

− iDky
)

i∆0

ξ
(Dkx

+ iDky
) −Ek + µ

]

. (3)

where Dkα
= ∂kα

− iAα(k) and Aα(k), the SU(2) con-
nections, are 2×2 matrices: [A]µνα (k) = i〈ϕµ

k
|∂kα

|ϕν
k
〉.

(i) Abelian case: Let us first consider the case when an
additional quantum number (such as spin) can be used
to label the degenerate FSs. Then, [A]µνα must be diag-
onal, and reduces to a pair of U(1) connections for the
two FSs. In this situation, (3) is identical to the effective
Hamiltonian for a px + ipy SC, if we interpret momenta
as position and ignore the gauge potential. The diagonal
terms represent a transition from weak to strong pair-
ing phase on crossing the FS when Ek = µ [3]. Thus
mid-gap are expected, composed of states near the Fermi
energy. Due to the finite size of the FS, these states have
an energy spacing of O

(

∆0

kF ξ

)

, the minigap energy scale.
However, a zero energy state appears if the FS encloses
a π-flux [3]. This can be implemented via the gauge po-
tential if

¸

FS

A · dl = π leading to a pair of zero modes,
since the other FS has the same Berry phase by T .

(ii) General case, SU(2) connection: In the absence
of any quantum number distinguishing the bands, one
integrates the vector potential A(k) around the FS in
the kz = 0 plane, to give the non-Abelian Berry phase:
UB = P exp

[

i
¸

FS

A · dl
]

∈ SU(2), where P denotes path

ordering. (There is no U(1) phase by T symmetry.) Al-
though UB itself depends on the choice of basis, its eigen-
values e±iφB are gauge invariant. A semiclassical anal-
ysis [19] gives the Bohr-Sommerfield type quantization
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condition for the low energy levels:

En =
∆0

lF ξ
(2πn+ π ± φB) (4)

where n is an integer and lF is the FS perimeter. A pair
of zero modes appears when φB = π, i.e. when UB = −1.

We have considered a single closed FS in the kz = 0
plane. Such a FS necessarily encloses a T invariant mo-
mentum (TRIM), (e.g. Γ), given the symmetries. When
there are multiple FSs, the condition above is applied in-
dividually to each FS, since tunneling between them is
neglected in the semiclassical approximation. Closed FSs
that do not enclose a TRIM, or pairs of open FSs, cannot
change the vortex topology.

Candidate materials: We now apply the Berry
phase criterion to some candidate materials to see which
of them can have protected MZMs at the ends of vortices.

CuxBi2Se3: The insulating phase of Bi2Se3 is a strong
TI with a single band inversion occurring at the Γ point.
On Cu doping, Bi2Se3 becomes n-type with an electron
pocket at Γ and is reported to superconduct below Tc =
3.8K [8, 20]. Photoemission measurements show µ ≈
0.25 eV above the conduction band minimum at optimal
doping [21]. We calculate the Berry phase eigenvalues
for a FS around the Γ point numerically as a function
of µ, which evaluates to ±π at µc ≈ 0.24 eV above the
conduction band minimum for a vortex along the c-axis
of the crystal [19]. Hence µ & µc indicates c-axis vortices
are near the topological transition[19]. However, tilting
the vortex away from the c-axis is found to raise µc to
upto µc = 0.30eV , for a vortex perpendicular to the c-
axis. Therefore, sufficiently tilted vortices should host
MZMs at the experimental doping level.

p-doped TlBiTe2, p-doped Bi2Te3 under pressure and
PdxBi2Te3: The bands of TlBiTe2 and Bi2Te3 are topo-
logically non-trivial because of a band inversion at the
Γ point [22]. The topological character of Bi2Te3 is be-
lieved to be preserved under a pressure of up to 6.3GPa,
at which it undergoes a structural phase transition. On
p-doping to a density of 6× 1020 cm−3 (3-6× 1018 cm−3),
TlBiTe2 (Bi2Te3 under 3.1GPa) becomes a SC below
Tc = 0.14K (∼ 3K) [10, 23], making it a natural sys-
tem to search for the possibility of MZMs. Similarly,
n-doping Bi2Te3 to a concentration of 9 × 1018 cm−3 by
adding Pd reportedly results in Tc = 5.5K [8] in a small
sample fraction. The superconductivity in Bi2Te3 under
pressure, and in TlBiTe2 (PdxBi2Te3) is believed to arise
from six symmetry related hole (electron) pockets around
the Γ-T line. This is an even number so vortex lines in
superconducting TlBiTe2 and both p- and n-type Bi2Te3
should have MZMs at their ends in all orientations.

MZMs from trivial insulators: The bulk criterion de-
rived does not require a ‘parent’ topological band struc-
ture. As a thought example, say we have four TRIMs
with Hamiltonians like the continuum Hamiltonian Hk

in their vicinity. Such band inversions at four TRIMs in

a plane leads to a trivial insulator [24]. However, if their
critical chemical potentials µc differ, then there could be
a range of µ where there are an odd number of VPTs be-
low and above µ, leading to topologically non-trivial vor-
tices. Interestingly PbTe and SnTe are both trivial insu-
lators with band inversions relative to each other at the
four equivalent L points. They both exhibit supercon-
ductivity on doping below Tc = 1.5K [25] and 0.2K [26]
respectively. A combination of strain (to break the equiv-
alence of the four L points) and doping could potentially
create the scenario described above in one of these sys-
tems. GeTe is similar to SnTe with Tc ∼ 0.3K [27] but
undergoes a spontaneous rhombohedral distortion result-
ing in the desired symmetry. Thus, I- and T -symmetric
systems with strong spin orbit can lead to SCs with
vortex end MZMs, even in the absence of a proximate
topological phase. Investigating the Fermi surface SU(2)
Berry phases, and thus the vortex electronic structure, in
this wide class of systems is a promising future direction
in the hunt for Majorana fermions.

In closing, we note that the VPT could potentially be
probed via thermal transport along the vortex line. A
hurdle is the small minigap scale (∆/kF ξ ∼ ∆2/EF ),
and the long confinement length of the MZMs to the
surface, which may be ameliorated by considering strong
coupling SCs or materials such as heavy fermions where
EF is reduced.

We thank A. M. Turner, J. H. Bardarson, A. Wray
and C. L. Kane for insightful discussions, and NSF-DMR
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