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We propose a new approach to generate and detect spin currents in graphene, based on a large
spin-Hall response arising near the neutrality point in the presence of external magnetic field. Spin
currents result from the imbalance of the Hall resistivity for the spin-up and spin-down carriers
induced by Zeeman interaction, and do not involve spin-orbit interaction. Large values of the spin-
Hall response achievable in moderate magnetic fields produced by on-chip sources, and up to room
temperature, make the effect viable for spintronics applications.

The spin-Hall effect (SHE) is a transport phenomenon
resulting from coupling of spin and charge currents: an
electrical current induces a transverse spin current and
vice versa[1, 2]. The SHE offers tools for electrical ma-
nipulation of electron spins via striking phenomena such
as current-induced spatial segregation of opposite spins
and accumulation of spin at the boundary of current-
carrying sample [3, 4]. All SHE mechanisms known to
date rely on spin-orbit interaction. The two main va-
rieties of SHE — intrinsic SHE and extrinsic SHE —
arise due spin-orbit terms in the band Hamiltonian[5] and
spin-dependent scattering on impurities[1], respectively.
Single layer graphene has emerged recently as an at-

tractive material for spintronics that features long spin
diffusion lengths[6], gate tunable spin transport[6, 7], and
high-efficiency spin injection[9]. However, to realize the
full potential of graphene, several issues must be ad-
dressed. First, the measured spin lifetimes are orders of
magnitude shorter than theoretical predictions[6–11] call-
ing for identifying and controlling extrinsic mechanisms
of spin scattering[10–14]. Second, the low intrinsic spin-
orbit coupling values[8, 15] render the conventional SHE
mechanisms ineffective, depriving graphene spintronics of
a crucial control knob for spin transport.
Here we outline a new approach to generate and probe

spin currents in graphene, based on a SHE response in the
presence of magnetic field that does not rely on spin-orbit

interaction. Spin currents are generated by the combined
effect of spin and orbital coupling to magnetic field. The
Zeeman splitting lifts the up/down spin degeneracy and
imbalances the Hall resistivities of different spin species
(see Fig.1 inset), leading to a net transverse spin current
in response to an applied charge current. The resulting
SHE response, called below ZSHE for brevity, is an essen-
tially classical effect that offers a robust and efficient way
to generate spin currents. The ZSHE response is sharply
enhanced near the Dirac point (DP). Unlike the propos-
als relying on a spin gap opened in the graphene bulk by
spin-orbital or Zeeman interations[16, 17], where temper-
atures are constrained by the spin gap values, kBT < ∆,
the ZSHE mechanism can operate in a wide range of tem-
pertures and magnetic fields. This makes the effect viable
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FIG. 1: Spin-Hall response induced by an external magnetic
field in graphene in the absence of spin-orbit coupling. The
SHE coefficient θSH, Eq.(3), peaks at the Dirac point (DP).
Spin currents at the DP originate from the the imbalance of
the spin-up and spin-down Hall resistivities due to Zeeman
splitting EZ (inset, red and blue curves). Steep behavior
of ρxy ‘amplifies’ the effect of Zeeman splitting, resulting in
a large spin-Hall response for |µ| <

∼ ∆µ. Large values θSH
can be reached already at moderate field strengths and high
temperatures, Eq.(14). Parameters used: B = 1T, disorder
broadening γ = 100K, electron-hole drag coefficient η = 2.3~.

for spintronics applications, such as spin sources and spin
injection that does not rely on magnetic contacts.
The enhancement at the DP, which results from special

transport properties of the Dirac fermions, is illustrated
in Fig. 1. Transport is unipolar at high doping from the
DP, dominated by carriers of one type, with ρxy following
the standard quasiclassical expression,

ρxy(n) = − B

nec
. (1)

Transport near the DP is bipolar, which produces smear-
ing of the 1/n singularity in ρxy by the effects of two-
particle scattering as well as disorder. This leads to a
steep linear dependence in ρxy(n) at the DP (Fig. 1 in-
set), which is also seen in experiment (Fig. 3). The large
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FIG. 2: (a) Schematic for spin accumulation in the SHE
regime. An electric current in a graphene strip drives trans-
verse spin current, resulting in spin density build-up across
the strip, Eq.(3). (b) Generation and detection of spin cur-
rent in the H-geometry. Electric current passed through the
region of local magnetic field drives spin current along the
strip. Voltage generated via inverse SHE is detected using
probes 3, 4. Hanle-type oscillation due to spin precession can
be induced by external magnetic field applied in-plane.

values of ∂ρxy/∂n, despite the smallness of the Zeeman
splitting, can yield giant ZSHE response.
The conventional SHE is described by the spin-Hall

conductivity which relates transverse spin current and
the electric field [1, 2]. To identify the relevant quantity
for ZSHE, we consider spin accumulation in a simplified
situation when the two spin species are independent, each
described by its own conductivity tensor. For a strip car-
rying uniform current (Fig.2a), the transverse gradients
of electrochemical potential for each spin projection are

∇y

(

φ+
n↑

eν↑

)

=
ρ↑xy

ρ↑xx
E , ∇y

(

φ+
n↓

eν↓

)

=
ρ↓xy

ρ↓xx
E , (2)

where E is the electric field x component, n↑(↓) and ν↑(↓)
are the spin-up (spin-down) concentration and density of
states. Ignoring spin relaxation, we estimate spin density
at the edge ns = n↑ − n↓ as

ns =
θSHweE

ν−1
↑ + ν−1

↓

, θSH =
ρ↑xy

ρ↑xx
−

ρ↓xy

ρ↓xx
≈ EZ

∂

∂µ

ρxy
ρxx

, (3)

with EZ the Zeeman splitting (for full treatment see [32]).
Here we used the smallness of EZ compared to the DP
smearing ∆µ (see Fig. 1) to express θSH as a derivative
with respect to µ. We see that the quantity θSH plays
a role identical to the ratio of the spin-Hall and ohmic
conductivities ξSH = 2σSH/σxx in the conventional SHE.
We will thus refer to θSH as the SHE coefficient.
For realistic parameter values, Eq.(3) yields large θSH

at the peak (see Fig.1). For B = 1T, using disorder
strength estimated from mobility in graphene on a BN

substrate, γ ≈ 100K (see Eq.(10)), we find θSH = 0.1.
This is more than two orders of magnitude greater than
the SHE values in typical spintronics materials with spin-
orbit SHE mechanism. Say, we estimate ξSH ≈ 5 · 10−4

from the spin and charge resistance measured in InGaAs
system [4]. The ’giant’ values θSH are in fact to be ex-
pected, since the ZSHE can be viewed as a classical coun-
terpart of the SHE at kBT < EZ discussed in Refs.[17, 18]
characterized by quantized σSH = 2e2/h.
Large θSH values result in ‘giant’ spin accumulation.

From Eq.(3), taking θSH = 0.1 and the density of states at
disorder-broadened DP ν↑(↓) ≈

√
∆n/π~v0 (with density

inhomogeneity ∆n ≈ 1010cm−2 typical for graphene on
BN substrate[19]), and using E = 1V/µm (a maximum
field for which transport is ohmic[20]), we estimate ns at
the edges of a 2µm-wide graphene strip:

ns ≈ 3 · 109 cm−2, (4)

which is comparable to the DP width ∆n. Such large
densities can be easily detected by spin-dependent tun-
neling. The estimate (4) is also four orders of magnitude
greater than the spin accumulation per atomic layer ob-
served in a three-dimensional GaAs [4], ns ≈ 5·105 cm−2.
Another attractive feature of the ZSHE is that it can

enable local generation and detection of spin currents.
Permanent micromagnets can generate fields up to 1T
concentrated to regions of size ∼ 0.5µm [21] (fields up to
1.4T are achievable using widely available Neodymium
Boron magnets). State-of-the-art microelectromagnets
have similar characteristics [22]. In an H-geometry, pic-
tured in Fig. 2(b), spin currents can be generated on
one end of graphene strip and detected on the opposite
end. External B field, applied in-plane or at an angle to
the graphene sheet, can be used to induce spin precession
which will manifest itself in Hanle-type oscillations of the
voltage measured between probes 3, 4. This setup can
serve as an all-electric probe of spin currents [19, 23, 24].
To model the dependence of θSH on B, T and disor-

der, we employ the quantum kinetic equation approach
of Refs.[25, 26]. For a spatially uniform system, we have

qe(h)

(

E+
v

c
×B

) ∂fe(h)(p)

∂p
= St [fe(p), fh(p)], (5)

where fe(h)(p) is the distribution function for electrons
and holes, and qe = −qh = e. To describe transport near
the DP, it is crucial to account for the contributions of
both electrons and holes. The collision integral describes
momentum relaxation due to two-particle collisions and
scattering on disorder [25, 26].
The approach based on Eq.(5) is valid in the quasi-

classical regime, when particle mean free paths are long
compared to wavelength. This is true when the colli-
sion rate is small compared to typical particle energy,
which requires weak disorder γ ≪ kBT , where γ is de-
fined in Eq.(10), and weak effective fine structure con-
stant α = e2/~v0κ ≪ 1 (κ is the dielectric constant).
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The kinetic equation (5) can be solved analytically
in the limit of small α [25, 26]. Rather than pursuing
this route, we follow Ref.[27] to obtain transport coeffi-
cients from the balance of the net momentum for differ-
ent groups of carriers, electrons and holes, taken to be
moving independently. We use a simple ansatz

fe(h)(p) =
1

e(εp−pae(h)−µe(h))/kBT + 1
, εp = v0|p|, (6)

where µe = −µh are the chemical potentials of electrons
and holes. The quantities ae and ah, which have the di-
mension of velocity, are introduced to describe a current-
carrying state. This ansatz corresponds to a uniform
motion of the electron and hole subsystems, such that
the collision integral for the e-e and h-h processes van-
ishes (as follows from the explicit form of the collision
integral given in Ref. [26]). Thus only the e-h collisions
contribute to momentum relaxation, resulting in mutual
drag between the e and h subsystems.
Eq.(5) yields coupled equations for ensemble-averaged

velocities and momenta of different groups of carriers (6):

qi

(

E+
Vi

c
×B

)

= − Pi

τdisi

− η
∑

i′

ni′(Vi −Vi′), (7)

where i, i′ label the e and h subsystems with different
spins. The ensemble-averaged scattering times τdisi , the
carrier densities ni, and the electron-hole drag coefficient
η, describing collisions between electrons and holes, are
specified below.
The quantities Vi, Pi are proportional to each other,

Pi = miVi. An explicit expression for mi as a func-
tion of T , µ can be found by expanding the distribution
functions (6) to lowest non-vanishing order in ae(h):

mi =
1

v0

∫

d2p px∇ax
fi(p)

∫

d2p px

p ∇ax
fi(p)

=
1

v0

∫

d2p p2xgi(p)
∫

d2p
p2
x

p gi(p)
, (8)

where gi(p) = fi(p)(1 − fi(p)). The integrals over p,
evaluated numerically, give the effective mass as a func-
tion of T and µ. At charge neutrality, setting µe(h) = 0,

we find mT = 9ζ(3)
2ζ(2)kBT/v

2
0 ≈ 3.29kBT/v

2
0.

The times τdisi and carrier densities ni in (7) are ex-
pressed through the distribution function (6) with ai = 0:

1

τdisi

=
2

ni

∫

d2p

(2π)2
fi(p)

τdisi (εp)
, ni = 2

∫

d2p

(2π)2
fi(p), (9)

where τdis(ε) is the transport scattering time, Eq.(10),
and the factor of two accounts for valley degeneracy.
We pick the model for disorder scattering to account

for the experimentally observed linear dependence of con-
ductivity vs. doping, σ = µ∗|n|, where µ∗ is the mobility
away from the DP. This is the case for Coulomb impuri-
ties or strong point-like defects, such as adatoms or va-
cancies [13]. In both cases the scattering time has an

approximately linear dependence on particle energy,

τdis(ε)|ε|>∼γ = ~|ε|/γ2, γ = v0
√

e~/µ∗ (10)

where the disorder strength parameter γ is expressed
through mobility. The value µ∗ = 6 · 104 cm2/V · s mea-
sured in graphene on BN [28] yields γ ≈ 120K. Similar
values are obtained from the ρxx-based DP width. Tak-
ing ∆n ≈ 1010 cm−2 [19], we find γ ∼ ~v0

√
∆n ≈ 100K.

To obtain ρ
↑(↓)
xy , we solve Eq.(7), accounting only for

the drag between electrons and holes of the same spin.
It can be shown [32] that including the drag between
species of opposite spin does not change the overall be-
havior of the transport coefficients and SHE. Eq.(7) can
be conveniently analyzed using complex-valued quanti-
ties Px + iPy, Vx + iVy, giving complex resistivity

ρ↑(↓)xx + iρ↑(↓)xy =
1

e2
γ̃eγ̃h + η ne

mh

γ̃e + η nh

me
γ̃h

ne

me

γ̃h + nh

mh

γ̃e + η (ne−nh)2

memh

. (11)

Here γ̃i =
1

τdis
i

− iΩi, with Ωi = qiB/mic the cyclotron

frequency.
As a sanity check, we consider the behavior at charge

neutrality. Setting ne = nh, me = mh, etc., gives ρxx
which is a sum of the Drude-Lorentz resistivity and the
electron-hole drag contribution analyzed in Refs.[25, 26],

ρ↑(↓)xx =
mT

2nT e2τ

(

1 + τ2Ω2
)

+
η

e2
, nT =

π

12

k2BT
2

~2v20
, (12)

and ρ
↑(↓)
xy = 0. Here nT is the density of thermally ac-

tivated electrons (holes) at the DP, having fixed spin
projection. Disorder scattering (first term) dominates
at low temperatures T <∼ T∗ = γ

√

~/η (at B = 0), while
electron-hole drag (last term) dominates at T >∼ T∗.
The value for the electron-hole drag coefficient η can

be obtained by matching the last term in Eq.(12)), di-
vided by 2 to account for spin, to the analytic result
ρxx ≈ 8.4~α2/e2 [25, 26]. We evaluate α using the effec-

tive dielectric constant κ = ε0+1
2 + π

2
e2

~v0
≈ 6, which ac-

counts for screening by substrate and for intrinsic screen-
ing in the RPA approximation. Taking ε0 ≈ 4 for BN
substrate [28], yields α ≈ 0.37, giving η ≈ 2.3~.
The dependence of transport coefficients on T , B and

carrier density n, predicted from Eq.(11), can be directly
compared to experiment. Fig. 3 shows ρxy(n) measured
in graphene on BN, on samples similar to those described
in Ref.[19]. The modeled ρxy(n) captures the main fea-
tures of the data: the 1/n dependence at large n and
a steep linear dependence near the DP. The linear re-
gion broadens with temperature at T >∼ γ. The peak
in ρxx(n) features similar thermal broadening [32]). The
SHE coefficient, found from Eq.(3), is plotted in Fig.1.
We now explore the behavior of transport coefficients

near the DP, making estimates separately for T >∼ T∗ and
T <∼ T∗. This can be conveniently done using an interpo-
lation formula τdisi (µ, T ) = mi(µ, T )v

2
0~/γ

2 which links
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FIG. 3: Measured ρxy(n) for a high-mobility graphene sample
on BN substrate at T = 250K. The dependence follows the
quasiclassical formula (1) away from the DP, and is linear with
a steep slope near the DP. Inset: Results for ρxy(n) obtained
from the two-carrier model, Eqs.(7),(11), for disorder strength
γ = 180K found by fitting the min/max distance in measured
ρxy for B = 1T. Other parameters: η = 2.3~, T = 250K.

the ensemble-averaged scattering time (9) and the effec-
tive mass (8) in the entire range of T and µ of interest.
We find the slope of ρxy at the DP by expanding

Eq.(11) in small n = ne−nh (see [32] for full treatment).
The result, which simplifies in each of the regimes T >∼ T∗

and T <∼ T∗, can be described by a single interpolation
formula as

∂ρxy
∂n

∣

∣

∣

∣

n=0

=
~
2v20

min (T 2
∗ , πT

2/3)

B

nT ec
, (13)

where only terms first-order in B have been retained.
The SHE coefficient, Eq.(3), found by combining the

results (13) and (12), and using thermally broadened den-
sity of states at the DP ∂n/∂µ = 2 ln 2

π
kBT
~2v2

0
[32], is

θSH|n=0 =
λE2

0EZ

2γ2kBT
, E0 = v0

√

2~eB/c, (14)

where E0 is the cyclotron energy. The functional form
is the same in both regimes, θSH ∝ B2/T , with different
prefactors λT>

∼T∗
= 24 ln 2/π2 and λT<

∼T∗
= 12 ln 2/π2.

The 1/T growth of θSH saturates at kBT ≈ γ, reaching
maximum value θSH,max ≈ 1

2λE
2
0EZ/γ

3.
We expect suspended graphene [29, 30] to feature an

even stronger SHE than graphene on BN. Using typical
mobility µ∗ = 2 · 105cm2/Vs [30], we estimate γ ∼ 65K,
whereas the temperature dependence of the conductivity
at the DP [30] yields γ ∼ 10K. For either value of γ,
Eq.(14) predicts very large values θSH at the DP.
Based on these estimates, we expect strong SHE re-

sponse already at moderate fields B <∼ 1T. Besides spin
accumulation and locally tunable SHE response, which
was discussed above, SHE can also manifest itself in a

non-zero Hall voltage in response to spin-polarized cur-
rents injected from magnetic contacts.

Since our SHE mechanism does not rely on the rela-
tivistic dispersion of excitations, it can also be realized
in other zero-gap semiconductors (e.g. graphene bilayer)
or in half-metals, materials with fully spin polarized con-
duction band. It also applies, with suitable modifica-
tions, to the valley degrees of freedom in graphene. It
was predicted that a (non-quantizing) magnetic field can
produce a Zeeman-like valley splitting [31]. This will im-
balance the Hall resistivities and result in a valley-Hall
effect of a magnitude similar to the SHE.
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