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Cooperative mutualism is a major force driving evolution and sustaining ecosystems. Although
the importance of spatial degrees of freedom and number fluctuations is well-known, their effects
on mutualism are not fully understood. With range expansions of microbes in mind, we show that,
even when mutualism confers a distinct selective advantage, it persists only in populations with high
density and frequent migrations. When these parameters are reduced, mutualism is generically lost
via a directed percolation process, with a phase diagram strongly influenced by an exceptional DP2
transition.
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Cooperation is at the heart of many complex sys-
tems [1, 2]. On an organism level, gut bacteria help their
hosts digest cellulose. On an ecosystem level, plants often
rely on fungi to receive important nutrients. Even human
societies are products of cooperation between individu-
als. Despite the apparent advantage and pervasiveness of
mutualistic interactions, their existence is often difficult
to explain by a naive application of Darwinian natural
selection: Cooperation can succumb to cheating [1] and,
as we show here, to number fluctuations.

To model complex interactions between individuals or
species, Maynard Smith developed evolutionary game
theory [2]. The central idea of game theory is that the
fitness of an organism depends on the frequency of en-
counters with other organisms in the population. Evolu-
tionary games are usually analyzed using mean-field-type
approximations, which neglect both spatial correlations
and number fluctuations. However, these simplifications
are not appropriate for natural populations living in spa-
tially extended habitats and can miss important stochas-
tic aspects of population dynamics. In particular, the
interplay of stochasticity and spatial degrees of freedom
leads to spatial demixing of different species or genotypes
in the population [3, 4], which can significantly decrease
the probability of mutualistic interactions.

Following pioneering work of Nowak and May [5], sev-
eral studies have investigated the effects of space on evo-
lutionary games [6, 7] (and references therein) using sim-
ulations on a two-dimensional lattice with a single non-
motile individual per site. Although these studies under-
scored the significant effects of spatial structure on evolu-
tionary dynamics, outstanding issues remain. First, the
outcomes of these lattice simulations are very sensitive
to the exact rules of birth and death updates and inter-
action pattern between nearest neighbors [7]; as a result,
these studies do not smoothly connect with the well-
understood dynamics in spatially homogeneous (well-

mixed) populations. Moreover, it is not clear whether
a model with a single nonmotile organism per site and
nearest neighbor interactions is a good description of any
species. Second, such models do not allow systematic in-
vestigation of the role of migration and the magnitude of
number fluctuations, which are important for the appli-
cations of the theory to natural and experimental popu-
lations. Third, closely related voter models in two spa-
tial dimensions have very slow logarithmic coarsening [8];
2d simulations typically do not explore the time scales on
which spatial demixing of species becomes important.

Our letter studies competition and cooperation in the
stepping stone model of population genetics [9]. This
model preserves the dynamics of well-mixed populations
locally, but includes migrations as well as number fluc-
tuations, which are controlled by the population density.
We focus on a one-dimensional model because stochas-
tic effects are more pronounced in lower spatial dimen-
sions [4]. More important, the spread of mutualism in two
dimensions often occurs via a traveling reaction-diffusion
wave, where the most important dynamics often occurs
at a moving quasi-one-dimensional frontier [4]. We find
that mutualism persists in a much smaller region of pa-
rameter space compared to well-mixed populations and
that it is more susceptible to spatial demixing when the
benefits to the interactants are unequal. The critical
strength of mutualism required to sustain cooperation
increases with migration rate and population density.
As the strength of mutualism is reduced, the population
undergoes a nonequilibrium phase transition in the uni-
versality class of either directed percolation (DP) or Z2

symmetric directed percolation (DP2); see Ref. [10] for a
comprehensive review of DP models.

The stepping stone model [9, 11] consists of demes (is-
lands) arranged on a line, with spacing a. Each deme
hasN organisms, which can reproduce and migrate. Dur-
ing a generation time τ , organisms migrate to one of the
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FIG. 1: (Color online) Mutualism in the one-dimensional stepping stone model [9, 11]. The simulation parameters are chosen
to mimic bacterial colonies growing in a Petri dish [12]. (a) Spatial demixing for N = 30, mN = 1, and no interspecies
interactions, all aij = 0. Green (light gray) and red (dark gray) represent species 1 and 2 respectively. Every deme and every
tenth generation are shown. (b) The same as in a, but with strong mutualism a12 = a21 = 0.5. (c) Heat map of H(4 · 106, 0)
from simulations with the same parameters as in a, but with 104 demes and varying a12 and a21.

nearest neighbors with probability m. Reproduction oc-
curs within a deme by selecting a random individual to
die and another individual to reproduce. The probability
to be selected for reproduction is proportional to individ-
ual’s fitness. We assume that the fitness is a sum of two
contributions: a background reproduction rate, scaled to
one for all organisms, and a benefit due to mutualistic
interactions with other organisms in the same deme (e.g.
due to exchanging nutrients). Let the benefit to the or-
ganism of type i from interacting with the organism of
type j be aij . If the types fractions within a deme are fi,
then the corresponding fitnesses wi in a given generation
are wi = 1 +

∑

j aijfj because the increases in growth
rate due to mutualism should be weighted by the density
of cooperating organisms.
For simplicity, we consider only two cooperating

species (or genotypes) and let the frequency of species 1
be f(t, x), where t is time, and x is position. The fre-
quency of the other species is then 1 − f(t, x). In the
limit aij ≪ 1, m ≪ 1, N ≫ 1, we find a continuum de-
scription of this one-dimensional stepping stone model in
terms of a generalized stochastic Fisher equation [4]

∂f

∂t
= sf(1− f)(f∗− f)+Ds

∂2f

∂x2
+
√

Dgf(1− f)Γ(t, x),

(1)
where Γ(t, x) is an Itô delta-correlated Gaussian white
noise [11], Ds = ma2/(2τ) is the spatial diffusion con-
stant, and Dg = 2a/(Nτ) is the strength of number
fluctuations. The key parameters s = (α1 + α2)/τ
and f∗ = α1/s are given in terms of α1 = a12 − a22
and α2 = a21 − a11, which characterise the relative ben-
efit of interspecies vs. intraspecies interactions. The
selective advantage (or strength) of mutualism is given
by s, while f∗ is the equilibrium fraction of species 1
that would occur in a spatially homogeneous population
without number fluctuations.

The usual mean-field treatment neglects spatial corre-
lations and fluctuations. With the neglect of the last two
terms, Eq. (1) becomes an ordinary differential equation,
and its dynamics can be easily analyzed. There are four
possible outcomes [11]. The population develops mutual-
ism when α1 and α2 > 0, one of the species outcompetes
the other when α1α2 < 0, and, when α1 and α2 < 0,
the population is bistable, with the either species capa-
ble of outcompeting the other depending on the initial
conditions.
Number fluctuations lead to local extinctions. In a fi-

nite well-mixed population, a stochastic treatment must
account for absorbing boundary conditions at f = 0
and f = 1, when one of the two species goes extinct.
The absorbing boundaries arise because there is a finite
probability to find the population in any of its discrete
states when the population size is finite. Therefore, after
a sufficiently long time, the population will reach one of
the absorbing boundaries and become fixed. The split-
ting probabilities and fixation times can be calculated for
this zero-dimensional problem with fluctuations using the
Kolmogorov backward equations [11].
In a spatially extended population, however, local ex-

tinctions can be prevented or rescued through migration.
Suppose, in particular, that migrations are frequent and
mutualism is sufficiently strong to keep the population
near the equilibrium fraction f∗. In this limit, we can
extend the mean-field approximation to account for fluc-
tuations and spatial degrees of freedom by replacing the
nonlinear reaction term in Eq. (1) with a linear one:

∂f

∂t
= sf∗(1−f∗)(f∗−f)+Ds

∂2f

∂x2
+
√

Dgf(1− f)Γ(t, x).

(2)
If f(t, x) ≈ f∗, the error we make should be small; more
important, Eq. (2) can now be solved exactly. The solu-
tion is most easily obtained in terms of the average spatial
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heterozygosity H(t, x), a two-point correlation function
equal to the probability to sample two different species
distance x apart:

H(t, x) = 〈f(t, 0)[1− f(t, x)] + f(t, x)[1 − f(t, 0)]〉. (3)

Using the Itô calculus, we derive the equation of motion
for H(t, x) from Eq. (2),

∂H

∂t
=

[

2Ds
∂2

∂x2
−Dgδ(x)− sH∗(1−H∗)

]

H, (4)

where δ(x) is the delta function, H∗ = 2f∗(1 − f∗), and
we, for simplicity, assumed that f(0, x) = f∗. The sta-
tionary solution, valid at long times, reads

H(∞, x)

H∗
= 1− e−x

√
sf∗(1−f∗)/Ds

1 +
√

8sDsf∗(1− f∗)/D2
g

. (5)

SinceH∗ is the heterozygosity of a well-mixed population
with f = f∗, the fraction on the right hand side is the
correction to the mean-field analysis. Thus, we see that,
for s ≪ D2

g/Ds, the probability of the two species coex-
isting at any particular point in space [given by H(∞, 0)]
becomes small, which is inconsistent with mutualism and
our assumption that f(t, x) ≈ f∗. Hence, we anticipate a
critical value of s below which mutualism must give way
to spatial demixing.
Although the hierarchy of moment equations does not

close for the original nonlinear problem given by Eq. (1),
the average spatial heterozygosity H(t, x) is still useful
for characterizing the behavior of the system. In partic-
ular, H(t, 0) can be used to measure the local amount of
mutualism. Equation (5) suggests that H(t, 0) reaches a
nonzero steady state value when s ≫ D2

g/Ds. However,
when s = 0, the exact solution of Eq. (1) reveals that
instead of reaching a steady state, H(t, 0) decays to zero
as t−1/2 [4]. When species do not coexist locally, mu-
tualism is impossible. Hence, we can use the long time
behavior of H(t, 0) to distinguish between populations
where mutualism can and cannot persist. See Ref. [11]
for another quantity to distinguish the phases, similar to
the susceptibility in equilibrium physics.
The phase digram obtained from simulations is shown

in Fig. 1c. The region of parameters where mutualism
can evolve is significantly reduced compared to the well-
mixed prediction (α1 > 0 and α2 > 0). In particular,
mutualism is impossible even for positive s, provided s
is small. Fluctuations and spatial structure also favor
symmetric mutualism, with α1 ≈ α2, i.e. when the two
species benefit equally from the interaction. The mu-
tualistic phase [characterized by limt→∞ H(t, 0) 6= 0] is
separated from the demixed phase [limt→∞ H(t, 0) = 0]
by two lines of second order phase transitions that meet

in a cusp: limt→∞ H(t, 0) decreases continuously to zero
as these lines are approached.
Nonequilibrium phase transitions from an ac-

tive (mixed) to an absorbing (demixed) state have been
studied extensively; see Ref. [10]. Generically, when
the absorbing states are not symmetric, α1 6= α2, the
exit from mutualism belongs to the DP universality
class. We can most readily see this for f∗ close to an
absorbing boundary, say f∗ ≪ 1. For large s, species 1
then remains at low frequencies. As s decreased, some
spatial regions stochastically lose species 1, but the
more abundant species 2 persists. Local extinctions are
opposed by the spread of species 1 from the nearby
regions via Fisher waves. This dynamics is just that of
DP in [10]. When α1 = α2, the absorbing states are
symmetric and the local extinctions of either species
are equally likely. As a result, this phase transition
belongs to DP2 universality class. We checked that
our simulations are consistent with the DP2 “bicritical
point” by calculating how H(t, 0) decays for different
values of s in a population that is initially well-mixed
(see Fig. 2a) and then collapsing these decay curves
onto a unique scaling function using DP2 exponents as
shown in Fig. 2b. Equation (1) is also known to describe
a DP2 transition for f∗ = 1/2 [13]. Although the DP2
transition occurs only at a point, it influences a large
portion of the phase diagram and governs the nonlinear
shape of the DP transition lines near this “bicritical
point.”
To understand how phase boundaries depend on the

parameters of the model, it is convenient to measure
distance in the units of Ds/Dg and time in the units
of Ds/D

2
g. For α1 = α2 = 0, the new time unit is

proportional to the time of local demixing, and the new
unit of distance to the size of domain boundaries [4, 14].
When, Eq. (1) is nondimensionalized, and the dynamics
is controlled by only two dimensionless parameters, f∗

and s̃ = sDs/D
2
g. We confirm this data collapse in sim-

ulations, see Fig. 2c.

Spatial structure and number fluctuations change not
only the mutualistic region (α1 > 0 and α2 > 0), but also
the whole phase diagram for well-mixed populations [11].
In particular, there is no bistable phase in 1d spatial pop-
ulations. For almost all initial conditions, domains of
species 1 or species 2 appear because of number fluctua-
tions; the subsequent behavior can be analyzed in terms
of the Fisher wave velocities of the domain boundaries.
For α1 > α2, this velocity is directed from species 1 to
species 2, and the direction is reversed for α1 < α2. As
a result, one of the species takes over, much like an equi-
librium first order phase transition proceeds through nu-
cleation and growth.

When α1 = α2 and mutualism is unstable, the popula-
tion segregates into single species domains, and the dy-
namics is driven by the random walks of domain bound-
aries. For s > 0 this demixing is slowed down by mutu-



4

(a) (b) (c)

FIG. 2: (Color online) Properties of the DP2 phase transition (α1 = α2) from simulations with the same parameters as in
Fig. 1c. (a) Decay of the local heterozygosity with time; lower values of the mutualism selective advantage s lead to faster
decay. (b) The collapse of H(t, 0) onto a universal scaling function shown in the inset with DP2 critical exponents for different s
above the phase transition at sc = 0.109. For the DP2 critical point, we expect β = 0.92 and ν‖ = 3.22 [10]. (c) H(t = 4 ·106, 0)

as a function of s̃ = sDs/D
2

g for different values of m and N [11].

alism, but for s < 0 it is sped up initially due to the reac-
tion term in Eq. (1). After domains form, however, more
negative values of s lead to slower coarsening because
the diffusion constant of domain boundaries decreases.
Surprisingly, the exactly solvable limit of α1 = α2 = 0
undergoes the fastest demixing in the long time limit for
large system sizes [11].
We have shown that number fluctuations can destroy

mutualism. This prediction can be tested most easily in
populations with weak migration and low effective pop-
ulation densities because the expected critical selective
advantage of mutualism sc is proportional to D2

g/Ds. Al-
though Ds and Dg are rarely known for natural popula-
tions, they have been estimated in bacterial colonies [12].
With some limitations [12], our theory should be directly
applicable to these populations because the edge of a
growing colony is a quasi one-dimensional population,
where the organisms not keeping up with the expan-
sion are effectively dead. Indeed, the competition of two
equally fit bacterial strains was accurately described by
Eq. (1) with s = 0 [12]. For mutualistic versions of the
two species Escherichia coli and Pseudomonas aerugi-

nosa studied in Ref. [12], our theory predicts sc = 0.21
and sc = 0.055 respectively. Fitness differences of such
magnitude can often be observed in microbial popula-
tions. More important, the relative strength of mutual-
ism can be varied in the lab [15] allowing observation of
the predicted phase transition.
After submitting this paper, we learned of a preprint

by Dall’Astra et al., “Strong noise effects in one-
dimensional neutral populations” (arXiv:1012.1209),
which discusses symmetric cooperation in a similar
model, corresponding to f∗ = 1/2 and α1 = α2 in our ter-
minology. Our work was constructed with experiments
at microbial frontiers in mind; hence, it differs due to its
focus on asymmetric interactions α1 and α2 of arbitrary
sign and the large deme sizes in our simulations.
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