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Recent numerical work (Nature 464, 847 (2010)) indicates the existence of a spin liquid (SL) phase
that intervenes between the antiferromagnetic and semimetallic phases of the half filled Hubbard
model on a honeycomb lattice. To better understand the nature of this exotic phase, we study the
quantum J1−J2 spin model on the honeycomb lattice, which provides an effective description of the
Mott insulating region of the Hubbard model. Employing the variational Monte Carlo approach, we
analyze the phase diagram of the model. We find three phases – antiferromagnetic, an unusual Z2

SL state, and a dimerized state with spontaneously broken rotational symmetry. We identify the
Z2 SL state as the likely candidate for the SL phase of the Hubbard model.

Introduction. The Hubbard model describes elec-
trons hopping on a lattice and interacting via on-site
Coulomb interactions,

H = −t
∑
〈ij〉,s

a†isajs + U
∑
i

ni↑ni↓, (1)

where s =↑, ↓ denotes spin and nis = a†isais. Despite
its conceptual simplicity, the Hubbard model exhibits a
rich phase diagram and is believed to capture the physics
of the high-temperature cuprate superconductors [1] (for
a review, see Ref. [2]). At half-filling and strong repul-
sion, U � t, the Hubbard model is in a Mott insu-
lator phase, in which electrons are localized by strong
Coulomb repulsion. The Mott insulator is characterized
by a charge gap of the order U , and, in the limit t � U
the low-energy dynamics of this phase is associated with
the spin degree of freedom. The effective spin-spin inter-
actions, which originate from virtual hopping processes
and intertwine spins of neighboring electrons, become
increasingly frustrated as the ratio U/t is lowered and
the Mott transition is approached. In the vicinity of the
Mott transition, the frustration enhances quantum fluc-
tuations, which can prevent ordering of spins down to
zero temperature, giving rise to spin liquid (SL) ground
states. The interest in SLs stems from the fact that some
of them exhibit new types of topological order [3], and the
fact that their properties may be linked with the physics
of the doped Hubbard model [2].

Recently, the Hubbard model on the honeycomb lat-
tice at half-filling was studied using the determinantal
quantum Monte Carlo (DQMC) method [4]. This model
has a crucial advantage of being free of the sign prob-
lem, and therefore DQMC gives essentially exact results
for correlators of the system. It was found that in the
vicinity of the Mott transition, the system exhibits a dis-
ordered spin phase. This phase intervenes between the
antiferromagnetic Neel state realized at higher U/t ≈ 4.3,
and the semimetallic phase at U/t < 3.5. The authors
of Ref. [4] found that the disordered phase shows a small
but finite spin gap, and preserves translational symme-
try and time-reversal symmetry. This suggests that the
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FIG. 1: Phase diagram of the quantum J1 − J2 model, ob-
tained using the variational Monte Carlo method. As J2/J1
increases, the system undergoes a phase transition between an
AFM state, and a gapped SL. We estimate the critical value
of J2/J1 = x1 ≈ 0.08. The arrow indicates the location for
this transition in the Hubbard model [4]. The SL state is best
described variationally by SPS. At higher J2/J1 = x2 the SL
gives way to a dimerized phase. Our variational study gives
an estimate x2 ≈ 0.3. Hashed area indicates values of J2/J1
that correspond to values of U/t in the Hubbard model that
are in the Neel or SL state [4].

disordered state on the honeycomb lattice is a non-chiral
SL.

In this paper, we attempt to elucidate the nature of
the SL state on the honeycomb lattice. We study the ef-
fective J1−J2 spin model of the large-U Hubbard model.
Using Variational Monte Carlo (VMC) method, we find
a phase diagram (Fig.1), which leads us to identify the
exotic phase seen in the Hubbard model as the sublattice-
pairing-state (SPS), a small-gap Z2 SL, first considered
in Ref. [5–7]. Our results should be contrasted with the
mean-field analysis of Ref. [5] which favors a gapless SL,
rather than SPS, in the relevant parameter range. We
attribute the difference to the fact that the mean-field
approach [5] neglects essential gauge fluctuations, which
are accounted for by VMC.

Spin Hamiltonian. We start from an effective spin
Hamiltonian, the J1 − J2 spin model,

H = J1
∑
〈ij〉

Si · Sj + J2
∑
〈〈ij〉〉

Si · Sj , (2)

where 〈ij〉, 〈〈ij〉〉 denote nearest-neighbor and next-
nearest-neighbor sites. To establish the connection with
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FIG. 2: Energies of AFM, ASL, SPS, and dimerized phases
compared for 10 × 10 system. AFM state is favorable at
J2/J1 <∼ 0.08; ASL and SPS states have energy lower than
AFM at J2/J1 >∼ 0.08, but their energies are very close.
Spontaneous breaking of the rotational symmetry occurs at
J2/J1 ≈ 0.3, giving rise to the dimerized state.
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FIG. 3: Energies of the SPS state for different values of pairing
amplitude ∆ as a function of pairing phase θ compared to the
ASL energy (for system size 14 × 14). SPS state is favored,
and its energy is minimized for ∆ ≈ 0.1, θ ≈ 1.1. * denotes
energy gain in J1 if SPS exactly obeyed the Marshall sign.

the Hubbard model, we calculate the parameters of the
spin model from the perturbation theory in (t/U)2 [8],
finding, to second order in (t/U)2, J1 = 4 t

2

U −16 t4

U3 , J2 =

4 t4

U3 . The SL phase in the Hubbard model then ranges
from J2/J1 ≈ 0.07 at the antiferromagnetic (AFM) tran-
sition to J2/J1 ≈ 0.12 at the semi-metal transition.
Note that taking into account higher-order terms in the
perturbation theory in (t/U)2 somewhat alters the val-
ues J2/J1 which correspond to the SL in the Hubbard
model [9]. Both exchange couplings are antiferromag-
netic, thus the effective spin model is frustrated. In this
study we ignore higher order terms in (t/U)2 as well
as third nearest neighbor and ring exchange terms[10].
At the relevant U/t ≈ 4.3 higher order terms are likely
too small to affect the results and third nearest neighbor
terms are non-frustrating and will primarily renormalize
the effective J1.

Quantum fluctuations are particularly important in

this model as they are enhanced by the low cooridina-
tion number of the honeycomb lattice and competition
between the J1 and J2 exchange interactions. We con-
trast the phase diagram of the quantum model (Fig. 1)
with that of the classical J1−J2 model. The latter model
exhibits just two phases: AFM, with opposite spin polar-
ization on the two sublattices of the honeycomb lattice,
and (an incommensurate) spiral ordering [11, 12], with a
phase transition occurring at J2/J1 = 1/6. We find that
the quantum fluctuations drastically alter this phase di-
agram. The spiral phase is destroyed at intermediate
J2/J1, giving way to a SL phase at J2/J1 < 0.3, and a
dimerized phase at J2/J1 >∼ 0.3. The Neel state survives
at small J2/J1 <∼ 0.08, albeit with reduced magnetiza-
tion. The transition point between AFM and SL may be
underestimated in our variational study; exact diagonal-
ization studies on small clusters [13, 14] suggest that the
transition happens at slightly higher value of J2/J1.

Ansätze. The main goal of this work is to understand
the nature of the SL phase. Toward that end we focus
on two primary types of wave-functions: (generalized)
Huse-Elser [15–18] states and resonating valence bond
(RVB) states [19, 20]. The former of these is chosen as a
good ansatz for the AFM state. In the Huse-Elser wave
function, the phase of the wave function is fixed by the
Marshall sign rule and for the real part we optimize a
separate variational two-body parameter C(r) for each
unique vector r.

The RVB state is represented as

|ψRV B〉 =
∑
{D}

AD
∏
i,j

| ↑i↓j − ↓i↑j〉 (3)

where {D} is a (generically non-nearest neighbor) dimer
covering of the lattice. Different choices for AD corre-
spond to qualitatively different types of wave functions.
RVB states are good ansätze for (gapped and gapless)
spin-liquid states as well as dimer states.

One approach for selecting these amplitudes is to write
down a large (but not complete) set of parameters speci-
fying the RVB amplitudes and then optimize over them.
We parameterize AD so as to be able to represent all BCS
Gutzwiller-projected states [19]. We call these generic
RVB states. Optimization for these (and the Huse-Elser)
states is done via stochastic optimization [21]. Because
optimization of a large set of parameters runs the risk
of being stuck in local minima, we are not guaranteed
to find the best state. Therefore, we also generate RVB
amplitudes in a more physically motivated way allowing
for fewer parameters.

This alternative approach uses the Schwinger fermion
representation of the spin model combined with
Gutzwiller projection [19]. In this approach, the
spin operator on the ith site is related to fermionic
creation-annihilation operators f, f† as follows, Sαi =∑
s,s′ f

†
isσ

α
ss′fis′ , and a constraint of one fermion per
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site is imposed,
∑
s f
†
isfis = 1. Wave functions of the

spin model are obtained by Gutzwiller projection of the
fermionic many-body wave functions, which projects out
sites with double or no occupancies.

The fermionic wave functions are then generated as
ground states of a quadratic Hamiltonian on the honey-
comb lattice

HF = −t
∑
〈ij〉,s

f†isfjs+
∑
ij

∆ij(f
†
i↑f
†
j↓−f

†
i↓f
†
j↑)+h.c. (4)

which includes nearest-neighbor hopping, and supercon-
ducting pairing. The parameters {∆} are chosen in such
a way that the ground state energy of the projected wave-
function is minimized.

An important advantage of the Schwinger fermion rep-
resentation is that there exist simple choices of {∆}, with
just hopping matrix element between nearby neighbors,
which describe different types of candidate SL states that
have been proposed. Lee and Lee [22], and later Her-
mele [23] conjectured the existence of an algebraic spin
liquid (ASL) on the honeycomb lattice, which is charac-
terized by gapless spin excitations with Dirac-like spec-
trum, similar to that in graphene. This corresponds to
the nearest-neighbor tight-binding model, with ∆ij = 0
for all i, j. Very recently, Lu and Ran [5] analyzed pos-
sible SLs in the SU(2) PSG framework [24]. Here we
will consider their candidate for a fully gapped SL - the
sublattice pairing state (SPS) [25] as well as the swave
SL (sSL) although the latter is believed to exhibit valence
bond order beyond mean-field. sSL is obtained by consid-
ering real ∆ij ’s, which are rotationally and translation-
ally invariant, for sites i, j which are nth nearest neigh-
bors or closer. SPS is characterized by complex pair-
ing amplitudes, with opposite phases on the two sublat-
tices [5], ∆ij = ∆eiθ, i, j ∈ A, ∆ij = ∆e−iθ, i, j ∈ B
where i, j are next-nearest neighbors. In all the SL an-
sätze, the symmetries (translational, time-reversal, rota-
tional symmetry) of the honeycomb lattice are respected.

Results. Using the VMC approach, we have mapped
out the energies of various phases, illustrated in Fig. 2.
We find a phase transition between AFM and SL at
J2/J1 ≈ 0.08. Both phases are also found in the Hubbard
model [4], and the transition point is remarkably close to
that in the Hubbard model. At higher frustration pa-
rameters (J2/J1 > 0.3), we find the rotational symmetry
of the RVB states is broken giving a dimerized state a
lower energy then that of the SL phase. This is seen by
optimizing RVB amplitudes up to third nearest neighbors
(with the other amplitudes fixed as in the ASL state) and
is consistent with findings from exact diagonalization and
spin-wave studies ([12–14]) where dimerized states have
been suggested. Having identified the location of the SL
phase, we turn to identifying its nature.

In establishing the form of SL state, we focus on the
ASL and the SPS state, which is variationally the lowest
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FIG. 4: Energy difference between SPS state with optimized
(for 14 x 14) pairing parameters (∆ ≈ 0.1, θ ≈ 1.1) and ASL
state as a function of system size. The energy difference ex-
trapolates to a non-zero value in the thermodynamic limit
L→∞. Non-monotonicity of the points is a result of incom-
mensurability effects with the lattice.

gapped state we find. We do not consider sSL as our op-
timization over generic RVB states (which includes sSL)
does not find a lower state then SPS. We notice that the
energy difference between ASL and SPS is very small,
and a more careful study is needed to distinguish be-
tween them.

To establish whether SPS is more favorable than the
ASL, we have optimized the SPS energy with respect to
pairing amplitude and phase. We first consider J2/J1 =
0.1, and a 14 × 14 system. By mapping out the energy
as a function of ∆, θ (see Fig. 3), we have established the
optimal values ∆/t ≈ 0.1, θ ≈ 1.1.

The energy of the SPS state with those parameters is
lower than that of ASL, suggesting that ASL is unsta-
ble with respect to pairing that opens a gap. However,
the energy gain due to the gap opening is so small that
one may doubt whether it survives in the thermodynamic
limit. To answer this question, we studied scaling of the
energy difference ESPS − EASL at the parameter values
∆/t = 0.1, θ = 1.1 as a function of system size L. The
result, illustrated in Fig. 4, clearly shows that the energy
difference extrapolates to a non-zero value in the ther-
modynamic limit 1/L → 0, indicating that SPS is the
ground state.

To understand why SPS is favorable compared to other
gapped spin liquids in the regime where J1 and J2 inter-
actions are competing, we studied the properties of the
SPS wave function. We find that, unlike a generic SL,
the optimized SPS approximately satisfies the Marshall
sign rule, which is a necessary property to minimize J1
interactions. The degree to which the Marshall sign is
violated can be quantified by the J1 energy gained if, for
all c, the sign (but not the amplitude) of Ψ(c) is altered
so as to obey the Marshall sign rule. From fig. 3 we see
this energy gain for SPS is extremely small, which im-
plies the sign rule is nearly satisfied. Interestingly, the
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FIG. 5: Dimer-dimer correlation function, defined as in [4]
for a SPS state. Green is the reference slice. Red indicates a
positive correlation with the reference slice and blue a nega-
tive correlation. The SPS has the same positive and negative
correlations as the dimer-dimer correlations found in [4].

ASL wave function also (in fact exactly) obeys the Mar-
shall sign rule. This is a primary reason behind the ASL
and SPS low energy.

We have repeated the comparison between energies for
ASL and SPS in the whole range of frustration parameter
0.05 < J2/J1 < 0.25, finding that SPS state is favored
in the range 0.05 < J2/J1 < 0.2, and at larger values of
the frustration parameter the energies of the two phases
are swapped [28]. Additionally at these higher frustra-
tion parameters, we find a generic RVB state that does
not break sublattice symmetry and has a lower energy
then the ASL state. Because we have not studied the
finite-size effects or optimized carefully the SPS param-
eters at these higher frustration parameters, this could
either point to a series of phase transition between the
different states, or to the SPS gap becoming too small to
be resolved without more careful optimization and finite
size extrapolation. Further work is needed to distinguish
between these different scenarios.

Having identified SPS as the variationally lowest en-
ergy state, we look at the dimer-dimer correlation func-
tion for an AFM and SL state (see Fig. 5). We find that
the dimer-dimer correlations of the SL state are positively
(respectively negatively) correlated on exactly the same
dimers as the Hubbard model at U/t ≈ 4.0 [4]. It should
be noted that although the ASL state has a similar look-
ing dimer pattern, due to the small gap of the SPS, the
AFM state looks qualitatively different.

Discussion. In conclusion, we have studied J1 − J2
model on the honeycomb lattice, finding three phases –
AFM, SL phase, as well as VBS phase. We have accu-
mulated evidence that the SPS state describes the spin-
liquid phase seen in the Hubbard Model. Beyond having
the transition happen near the correct place, we find it
to be the variational lowest energy state beating out the
gapless ASL state. Moreover, the dimer-dimer correla-
tions closely match those of the Hubbard model. Finally,
we should note that it is not clear whether the SPS state
represents a phase of matter that is distinct from the
simplest short ranged RVB phase obtained, e.g., in the
quantum dimer model [27].
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