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We solve a long-standing problem about a theoretical description of the upper critical magnetic
field, parallel to conducting layers and perpendicular to conducting chains, in (TMTSF)2ClO4 su-

perconductor. In particular, we explain why the experimental upper critical field, Hb
′

c2 ≃ 6 T , is
higher than both the quasi-classical upper critical field and Clogston paramagnetic limit. We show
that this property is due to the coexistence of the hidden Reentrant and Larkin-Ovchinnikov-Fulde-
Ferrell phases in a magnetic field in a form of three plane waves with non-zero momenta of the
Cooper pairs. Our results are in good qualitative and quantitative agreement with the recent ex-

perimental measurements of Hb
′

c2 and support a singlet d-wave like scenario of superconductivity in
(TMTSF)2ClO4.

PACS numbers: 74.70.Kn, 74.20.Rp, 74.25.Op

Physical properties of quasi-one-dimensional (Q1D) or-
ganic conductors (TMTSF)2X (X=PF6, ClO4, ReO4,
etc.) have been intensively studied [1,2] since a discovery
of superconductivity in (TMTSF)2PF6 [3]. Early exper-
iments [4,5] clear showed that superconducting phases
in these compounds were unconventional and that the
corresponding order parameters changed their signs on
Q1D Fermi surfaces (FS). In particular, it was shown
that the Hebel-Slichter peak was absent in the NMR
experiment [4] and superconductivity was destroyed by
non-magnetic impurities [5]. These results have been re-
cently confirmed in a number of publications (see, for
example, Refs. [6,7]). The first Knight shift measure-
ments [7,8], performed in (TMTSF)2PF6 conductor in a
magnetic field H = 1.43 T , showed that the Knight shift
was unchanged in superconducting phase and were in-
terpreted as evidence for triplet superconductivity. On
the other hand, more recent Knight shift data [9], per-
formed in (TMTSF)2ClO4 conductor, clear demonstrate
the Knight shift change through the superconducting
transition in a magnetic field H = 0.957 T . They are
interpreted [9] in terms of singlet pairing in superconduc-
tor (TMTSF)2ClO4 at least at relatively weak magnetic
fields.

Another source of information about a spin part of
the superconducting order parameter was provided by
fact that the experimental upper critical magnetic field
along conducting chains, Ha

c2 [10], was clear paramag-
netically limited [11]. This has been recently confirmed
in Refs. [12-14]. In addition, new superconducting phase
has been discovered in (TMTSF)2ClO4 [12,13] for a mag-
netic field, parallel to conducting chains. The suggested
hypothesis [12,13] that it can be the Larkin-Ovchinnikov-
Fulde-Ferrell (LOFF) phase [15,16] has been recently the-
oretically supported [17]. Note that the above men-
tioned experimental and theoretical works are in favor
of a singlet d-wave like scenario of superconductivity in
(TMTST)2ClO4 [14,17-19] .

In this situation, where support for a singlet
d-wave like scenario of superconducting pairing in
(TMTST)2ClO4 conductor is growing, it is important
theoretically reinvestigate the upper critical field, paral-
lel to conducting layers and perpendicular to conducting
chains, Hb′

c2. For many years, large experimental values
of Hb′

c2 [10,12,13,20-23], which exceeds both the quasi-
classical upper critical field, Hb′

c2(0) [24], and Clogston
paramagnetic limit, Hp [25], have been considered as one
of the main arguments in favor of triplet superconductiv-
ity. Although the exceeding of the values of Hb′

c2(0) and
Hp was predicted for Hb′

c2 in both singlet and triplet cases
[26-30], it was also shown that, for realistic band param-
eters of (TMTST)2X conductors, it can happen only in
a triplet case [11,20,26-30].

The goal of our Letter is to demonstrate that super-
conductivity in (TMTSF)2ClO4 can exceed both criti-
cal magnetic fields, Hb′

c2(0) ≃ 3.5 T and Hp ≃ 2.7 T ,

and reach its experimental value, Hb′

c2 ≃ 6 T [12,13,23],
even in case of a singlet d-wave like superconducting
pairing. The first our point is that the Pauli param-
agnetic effects in all previous theories [26-30,11,20] were
treated not completely correctly. The second our point
is that the 3D → 2D dimensional crossover [26] hap-
pens at magnetic fields Hb′ ≃ 5 − 6 T , which are much
lower than the previously assumed. The latter state-
ment is shown to result from theoretical analysis of both
the Ginzburg-Landau (GL) slopes, dHb′

c2/dT |T=Tc
and

dHc
c2/dT |T=Tc

, measured in Refs.[12,13,23], and the so-
called Lee-Naughton-Lebed oscillations [31,32]. In the
Letter, we derive a novel gap equation, which treats ac-
curately both the Pauli paramagnetic and orbital de-
structive effects against superconductivity. By analyzing
this equation, we show that it predicts the upper criti-
cal field, Hb′

c2 ≃ 6 T , for real values of band parameters
in (TMTSF)2ClO4. Superconducting phase, which ex-
ists at such high magnetic fields, is shown to be very
peculiar. It is characterized by a inhomogeneous order
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parameter in a form of the three LOFF-like waves, which
appear both due to the 3D → 2D dimensional crossover
and Pauli paramagnetic effects. It is important that this
phase is characterized by the Cooper pairs, localized on
conducting layers, with probability of the Cooper pair
jumping from one layer to another being small. There-
fore, it is not destroyed by the orbital effects in a parallel
magnetic field. In the absence of the Pauli paramagnetic
effects, such phase would correspond to the Reentrant
superconductivity with dTc/dH > 0, therefore, we call it
the hidden Reentrant superconducting phase.
Below, we consider a tight-binding orthorhom-

bic model of anisotropic Q1D electron spectrum in
(TMTSF)2ClO4 conductor,

ǫ(p) = −2ta cos(pxa/2)− 2tb cos(pyb
′)− 2tc cos(pzc

∗),
(1)

which can be simplified near two slightly corrugated
sheets of Q1D FS as

δǫ±(p) = ±vx(py)[px ∓ pF (py)]− 2tc cos(pzc
∗). (2)

[Here ta ≫ tb ≫ tc correspond to electron hoping inte-
grals along a , b′, and c∗ axes, respectively; +(-) stands
for right (left) sheet of FS.]
In a magnetic field, parallel to conducting planes and

perpendicular to conducting chains of Q1D conductor,

H = (0, H, 0), A = (0, 0,−Hx), (3)

we use the so-called Peierls substitution method, px ∓
pF (py) → −id/dx, pz → pz − eAz/c. As a result, effec-
tive Scrodinger equation for electron wave functions in a
mixed representation, ψ±(x, py, pz, σ), can be written as

[

∓ivx(py)
d

dx
−2tc cos

(

pzc
∗ +

ωc

vF
x

)

−µBσH

]

×ψ±
ǫ (x, py, pz, σ) = δǫ ψ±

ǫ (px, py, pz, σ),(4)

with electron wave in a real space functions being

Ψ±
ǫ (x, y, z, σ) = exp[ipF (py)x] exp(ipyy) exp(ipzz)

ψ±
ǫ (x, py, pz, σ), (5)

where ωc = evFHc
∗/c, µB is the Bohr magneton, σ = ±1

stands for spin up and down, respectively.
It is important that Eq.(4) can be analytically solved:

ψ±
ǫ (x, py, pz, σ) =

exp[±iδǫx/vx(py)]
√

2πvx(py)
exp

[

±iµBσHx

vx(py)

]

× exp

[

±i 2tc
vx(py)

∫ x

0

cos

(

pzc
∗ +

ωc

vF
u

)

du

]

, (6)

where wave functions (6) are normalized on δ(ǫ1 − ǫ2),
δǫ = ǫ−ǫF . The corresponding finite temperatures Green
functions can be derived from Eq.(6) by means of the

standard procedure [33]:

g±iωn
(x, x1, py, pz, σ) = −i sgn(ωn)

vx(py)
exp

[

∓ωn(x− x1)

vx(py)

]

× exp

[

±iµBσH(x− x1)

vx(py)

]

× exp

[

±i 2tc
vx(py)

∫ x

x1

cos

(

pzc
∗ +

ωc

vF
u

)

du

]

. (7)

[Note that, in contrast to the previous works [26-
30,11,20], Eqs.(6),(7) take into account dependence of
electron velocity along conducting chains, vx(py), on a
momentum component py. As shown below, it allows to
describe accurately the Pauli paramagnetic destructive
effects against superconductivity.]

In this Letter, we consider a singlet d-wave like sce-
nario of superconductivity in (TMTSF)2ClO4 conductor
[14,17-19], which is consistent with all available experi-
mental data. Therefore, we introduce the following su-
perconducting order parameter,

∆(py, x) =
√
2 cos(pyb

′)∆(x), (8)

where the first term,
√
2 cos(pyb

′), is responsible for the
existence of zeros on Q1D FS, whereas the second term
describes both the orbital effects against superconduc-
tivity and possible LOFF like phase formation. Below,
we derive a so-called gap equation for the superconduct-
ing order parameter (8), using the Green functions (7).
It is derived by means of the Gor’kov equations [33] for
non-uniform superconductivity (see, for example, Refs.
[34-36]. As a result of rather lengthly calculations, we
obtain:

∆(x) = g′
∫

dpy
vx(py)

∫

|x−x1|>
vx(py)

Ω

2πTdx1

vx(py) sinh
( 2πT |x−x1|

vx(py)

)

×J0
{

8tcvF
ωcvx(py)

sin

[

ωc(x− x1)

2vF

]

sin

[

ωc(x+ x1)

2vF

]}

×2 cos2(pyb
′) cos

[

2βµBH(x− x1)

vx(py)

]

∆(x1), (9)

where g′ stands for electron coupling constant, Ω is a
cutoff energy, parameter β takes into account possible
deviation of the so-called electron g-factor, g = 2β, from
the value g = 2 [37]. We stress that Eq.(9) is different
from the gap equations, used so far, and, unlike Refs.
[26-30,11,20], it describes accurately not only the orbital
effects but also the Pauli paramagnetic ones. Note that
Eq.(9) is based on a quantum mechanical treatment of
electron motion both in parallel and perpendicular to
conducting layers directions. It is the most general gap
equation, which can be written for Q1D conductor (2)
in a magnetic field (3). It is possible to show that the
major quantum parameter in Eq.(9) is 2tcvF /ωcvx(py) ≃
2tc/ωc. It is also possible to prove that in low magnetic
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fields, where 2tc/ωc ≫ 1 and (Tc − T )/Tc ≪ 1, Eq.(9) is
reduced to the well known GL equation [38].
Let us estimate a value of the dimensionless quantum

parameter l⊥(H) = 2tc/ωc in Eq.(9), which, using classi-
cal language, represents a size of electron trajectory along
z axis in terms of interlayer distance [26]:

z(t,H) = l⊥(H) c∗ cos(ωct), (10)

where t is time. It is easy to show that

l⊥(H) =
2
√
2

π

φ0
ac∗H

tc
ta

≃ 2× 103

H(T )

tc
tb

tb
ta
, (11)

where H(T ) is a magnetic field, measured in Teslas.
Here, according to Ref.[32], ta/tb = 10 and, accord-
ing to Ref.[38], tc/tb = (b∗/

√
2c∗)(Hc

c2/H
b′

c2)GL with
(Hc

c2/H
b′

c2)GL is being a ratio of the GL slopes of the
upper critical fields along c∗ and b′ axes, correspond-
ingly [39]. Note that the ratios ta/tb = 10 [31] and
(Hb′

c2/H
c
c2)GL = 26 [12,13] are very well measured in

(TMTSF)2ClO4 conductor. If we take H(T ) = 6 T , we
obtain

l⊥(H = 6T ) ≃ 0.48, (12)

which means that a size of electron classical trajectory
along c∗ axis (10) is significantly less than interlayer
distance, c∗. In this case, which corresponds to the
3D → 2D dimensional crossover of electron motion in
a magnetic field [26,40], it is possible to make sure di-
rectly from Eq.(9) that we can approximate the Bessel
function as J0(z) ≃ 1− z2/4.
Let us consider the above mentioned approximation for

integral equation (9) at zero temperature, T = 0. It is
possible to show that solution for a superconducting gap,
∆(x), in this case can be written as

∆(x) = exp(ikx)[1+α1 cos(2ωcx/vF )+α2 sin(2ωcx/vF )],
(13)

where |α1|, |α2| ≪ 1. Eq.(9), determining the upper crit-
ical field, in the same approximation and at T = 0 can
be expressed as

1

g̃
=

∫ 2π/b′

0

dpyb
′

2π

∫ ∞

vF
Ω

dz

z
2 cos2(pyb

′) cos

(

2βµbHz

vF

)

× vF
vx(py)

[

1− 2l2⊥(H) sin2
(

ωcz

2vF

)]

cos

[

vx(py)

vF
kz

]

,(14)

where g̃ is renormalized electron coupling constant, x1 −
x = zvx(py)/vF . [Note that we set α1 = α2 = 0 in
Eq.(14), since we disregard all contributions of the order
of l4⊥(H) ≪ l2⊥(H) to the upper critical field.]
Below, we simplify Eq.(14), taking into account that

electron velocity component along conducting x axis is

vx(py) = vF [1 + α cos(pyb
′)], (15)

where α =
√
2tb/ta ≃ 0.14 [20]. More specifically,

Eq.(14) for α≪ 1 can be written as follows:

1

g̃
=

∫ ∞

vF
Ω

dz

z
cos

(

2βµBHz

vF

)

cos(kz)[J0(αkz)− J2(αkz)]

×
[

1− 2l2⊥(H) sin2
(

ωcz

2vF

)]

. (16)

It is important that Eq.(16) accurately takes into account
the Pauli paramagnetic effects against superconductivity,
unlike Refs.[26-30,11,20]. Note that, in the absence of the
Pauli paramagnetic effects (i.e., at β = 0), Eq.(16) de-
scribes the Reentrant superconducting phase [26] with
dTc/dH > 0. Therefore, we call superconducting phase,
described by Eqs.(16),(18), the hidden Reentrant super-
conductivity.
Let us further simplify Eq.(16) by taking into account

that

1

g̃
=

∫ ∞

vF
Ω

2πTcdz

vF sinh

(

2πTcz
vF

) , (17)

where Tc is the superconducting transition temperature
at H = 0. As a result, we obtain

ln

(

H

H∗

)

=

∫ ∞

0

dz

z
cos

(

2βµBHz

vF

)

×
{

cos(kz)[J0(αkz)− J2(αkz)]

×
[

1− 2l2⊥(H) sin2
(

ωcz

2vF

)]

−1

}

, (18)

where µBH
∗ = πTc/2γ, γ is the Euler constant. Numer-

ical analysis of Eq.(18) shows that the upper critical field
along b′ axis, Hb′

c2, for l⊥(H) = 0.48 and β = 0.84 has a
maximum at k = 0.88(2βµBH/vF ) and is equal to

Hb′

c2 ≃ 5.9 T. (19)

[We pay attention that the obtained value of the upper
critical field (19) well corresponds to the value of a mag-
netic field (12).] For the same values of the parameters
l⊥(H) and β, numerical analysis of Eq.(9) gives the fol-
lowing values for factors α1 and α2 in Eq.(13):

α1 = −0.139, α2 = 0.021 i. (20)

Below, we summarize the main results of the Letter.
We have derived gap equations (9),(14),(16),(18), which,
unlike gap equations in the previous publications, take
accurately into account not only the orbital effects, but
also the Pauli paramagnetic effects against superconduc-
tivity. We have analyzed the experimental data [12,13,32]
and shown that, in contrast to the common believe, the
quantum effects of electron motion in a magnetic field
[26,41] are strong in relatively weak magnetic fields of
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the order of 5 − 6 T in (TMTSF)2ClO4 conductor. By
analyzing the above mentioned gap equations, we have
explained how superconductivity in (TMTSF)2ClO4 can
exceed both the quasi-classical upper critical field [24]
and Clogston paramagnetic limit [25] and how it can
reach its experimental value, H ≃ 6 T [12,13]. We
have shown that, due to the reentrant quantum effects
[26,41], superconductivity survives in form of the hid-
den Reentrant superconducting phase, corresponding to
three LOFF-like phases. Although we have not calcu-
lated in the Letter phase diagram of the (TMTSF)2ClO4

superconductor in all range of temperatures and mag-
netic fields, we anticipate the existence of phase transi-
tion between the BCS and LOFF phases at H ≃ 2.5 T ,
which can be experimentally studied.
In conclusion, we note that the considered above hid-

den Reentrant superconductivity is a rather general phe-
nomenon. It is expected to exist in other (TMTSF)2X
conductors and may exist in quasi-two-dimensional su-
perconductors in a parallel magnetic field. Neverthe-
less, this phase in (TMTSF)2PF6 material, which is sta-
ble in a mixed superconducting-spin-density-wave state
[21,22,42] in a magnetic field up to H = 9 T , possesses
some peculiarities. Our preliminary analysis shows that,
to describe the hidden Reentrant superconducting phase
in (TMTSF)2PF6, it is necessary to take into account
some additional effects such as the singlet-triplet mixing
phenomenon [43] or possible singlet-triplet phase transi-
tion (see, for example, [30,20]).
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