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We study a class of ansatz wave functions in which composite fermions form two correlated
“partitions.” These “bipartite” composite fermion states are demonstrated to be very accurate for
electrons in a strong magnetic field interacting via a short-range 3-body interaction potential over
a broad range of filling factors. Furthermore, this approach gives accurate approximations for the
exact Coulomb ground state at 2 + 3/5 and 2 + 4/7, and is thus a promising candidate for the
observed fractional quantum Hall states at the hole conjugate fractions at 2 + 2/5 and 2 + 3/7.
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While the fractional quantum Hall effect1 (FQHE) in
the lowest Landau level (LL) is securely explained by the
composite fermion (CF) theory,2 the physics of the more
delicate FQHE in the second LL is currently under de-
bate. The observation3 of FQHE at 5/2 has motivated
the idea of pairing of composite fermions, represented by
the Pfaffian wave function of Moore and Read.4–7 Several
generalizations of this idea have been proposed.9–12 We
construct below “bipartite” CF (BCF) wave functions at
arbitrary fillings by analogy to an earlier theory of CF
states in bilayer systems,14 and compare them to exact
eigenstates of the Coulomb interaction as well as of a
short range three body interaction for which the Pfaffian
state is exact at half filling. For the latter, the BCF wave
functions are shown to be very accurate over a broad
range of filling factors, in particular for the neutral ex-
citations and quasiparticles of the Pfaffian state, as well
as for incompressible FQHE states. The BCF wave func-
tions also provide a good representation of the second LL
Coulomb states at 2 + 3/5 and 2 + 4/7. (Evidence has
been seen8 for FQHE at the particle-hole conjugate states
2+2/5 and 2+3/7.) Aside from the fundamental intrinsic
interest in their physical origin, the former state has at-
tracted attention because of a proposal9 which produces
nonabelian braid statistics for its quasiparticles that is
sufficiently complex as to enable, in principle, universal
quantum computation.
Our starting point is the observation that, following

an identity due to Cauchy, Moore-Read’s Pfaffian wave
function4 can be expressed as5

ΨPf
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where the particles are partitioned into halves, labeled
by zj = xj + iyj and the other half wk = xk + iyk, and
A denotes the anti-symmetrization operator over all N
coordinates. (We suppress the ubiquitous Gaussian fac-
tor for ease of notation.) In other words, the Pfaffian
wave function is obtained by fully antisymmetrizing the
spatial part of Halperin’s 331 bilayer wave function.13

A more general class of bilayer CF wave functions was
constructed by Scarola and Jain,14 and the trial wave

functions considered here are constructed by fully anti-
symmetrizing the spatial part of the generalized bilayer
CF wave functions. Explicitly, the BCF wave functions
are given by

ΨBCF
ν = A ΨCF

ν̄ ({zj})Ψ
CF
ν̄ ({wj})

N/2
∏

j,k=1

(wj − zk) (1)

Prior to antisymmetrization, the wave function has two
partitions, {zj} and {wj}, with different correlations
within and across partitions. The factor ΨCF

ν̄ ({zk}) =

PLLL

∏N/2
j<k(zj − zk)

2pΦν∗ is Jain’s CF wave function,

where Φν∗ is the wave function of N/2 noninteracting
electrons at ν∗, PLLL is the lowest LL (LLL) projection
operator, and ν̄ = ν∗/(2pν∗ +1). Composite fermions in
different partitions are correlated through the last factor.
Power counting tells us that in the thermodynamic limit,
the overall filling fraction ν is related to the CF filling
fraction ν∗ by

ν =
2ν̄

ν̄ + 1
=

2ν∗

(2p+ 1)ν∗ + 1
. (2)

When ν∗ = n is an integer, an incompressible BCF state
is obtained at ν = 2n/[(2p+1)n+1]. The wave functions
for its ground state, neutral excitations, quasiparticles
and quasiholes can be constructed from the correspond-
ing known wave functions of the integral quantum Hall
state at ν∗ = n. For the special case of ν∗ = 1, Eq. 1
reproduces the familiar 1/2p Pfaffian ground state.
The BCF wave functions describe complex interactions

between composite fermions. Their form suggests pairing
correlations, because electrons in the bulk can be added
only in pairs (one in each partition), and quasiholes or
quasiparticles can also be created only in pairs. An a pos-
teriori evidence for the paired nature of ΨBCF comes from
our numerical results below, which demonstrate that they
are accurate approximations of the solutions of a 3-body
model interaction which has no barrier to forming pairs
but a pair repels the approach of a third particle.
Wave functions for incompressible states of the same

form as that in Eq. (1) have also been motivated by
Milovanović and Jolicœur11 and Hermanns.12 The former
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FIG. 1. (color online) Schematic depiction of the incompress-
ible state and excitations at 4

7
with 2Q∗ = 1. In each panel,

the two blocks indicate two partitions each at filling factor
ν∗ = 2. Each circle denotes a single particle orbital, and
composite fermions occupying them are shown as solid dots
with arrows attached to them. The horizontal lines are the
Λ levels with the states in each Λ level arranged in the order
of increasing Lz. (a) Incompressible state. (b) One neutral
excitation. (c) Two quasiholes. (d) Two quasiparticles.

considers analogs where the composite fermions in each
layer experience a negative flux, and the latter employs
a conformal field theory prescription for adding compos-
ite fermions in higher Λ levels (i.e., Landau-like levels of
composite fermions).
All calculations in this paper are performed in the

standard spherical geometry in which the N electrons
move on the surface of the sphere under the influence
of a radial magnetic field. The total flux through this
spherical surface is 2Qhc/e, where 2Q is an integer due
to Dirac quantization condition. N is taken to be an
even integer. The wave functions of Eq. 1 can be trans-
lated into the spherical geometry using standard meth-
ods. For Coulomb interaction we consider N electrons
in the second LL; treating the lowest LL as inert, this
system is formally mapped into N electrons in the LLL
with an effective interaction. LL mixing and finite thick-
ness corrections may be substantial under experimental
conditions,15,16 but we neglect them in the present study.
The composite fermions in individual layers experience

an effective flux of 2Q∗ = 2Q + 2 − (2p+1)
2 N . The state

at ν = n/[(2p+ 1)n± 1] occurs at 2Q = N/ν ∓ (n+ 2p).
The structure of the BCF states is shown schematically
in Fig. 1
The local charge of the quasiparticles, which is the ex-

cess charge associated with an isolated quasiparticle, can
be determined by asking how many quasiparticles are
generated upon the addition of two electrons. This pro-
duces a local charge of [(2p+ 1)n+ 1]−1 (in units of the
electron charge) for the quasiparticles of the BCF state
at ν = 2n/[(2p+1)n+1]. In particular, the local charges
of the quasiparticles at 1/2, 4/7, 3/5 are 1/4, 1/7, 1/10.
We have carried out an extensive comparison of our

BCF wave functions with the exact eigenstates of a 3-
body and the second-LL Coulomb interactions, and we
now present the results for the largest systems that we
have been able to study. The 3-body interaction5,6 is

given by Ĥ3−body =
∑

i<j<k P
(3)
ijk (3Q−3), where P

(3)
ijk (L)

projects the state of the three particles (i, j, k) into the
subspace of total orbital angular momentum L. The BCF
wave functions are very complex because of the need
for lowest LL projection as well as antisymmetrization,
which makes their Monte Carlo evaluation impractical.
Fortunately, it is possible to calculate the overlaps and
energies of the BCF wave functions exactly if we have
the complete set of 3-body or Coulomb eigenstates and
eigenenergies. Completeness implies that each BCF state
ψ can be expressed as a linear superposition of the exact
eigenstates in the appropriate L sector: ψ =

∑

n cn|n〉.
The coefficients of superposition cn can be determined
by generating a set of linear equations for them by eval-
uating the wave function for sufficiently many particle
configurations {zj}. Once expressed explicitly in terms
of the interaction eigenstates, the energies and overlaps
can be evaluated straightforwardly.
Fig. 2 shows the comparison of BCF wave functions

for neutral excitations as well as for two and four quasi-
particles at ν = 1/2 with the exact eigenstates of the
3-body interaction. Both the energies and overlaps show
good agreement for the low energy states, which corre-
spond to states with far separated (to the extent possi-
ble in our finite systems) quasiparticles and quasiholes.
(We note that for neutral excitations the separation be-
tween the quasiparticle and the quasihole increases with
L, whereas for two charged excitations the largest sep-
aration is obtained at the smallest L. The situation is
more complex when many quasiparticles or quasiholes
are present.) Remarkably, the neutral excitation branch
is very nicely reproduced beyond a few initial L values.
The comparison of the BCF states with the second LL
Coulomb eigenstates at ν = 5/2, also shown in Fig. 2, is
less satisfactory. We cannot rule out that the quasiparti-
cles of 3-body and Coulomb interaction are adiabatically
connected, although a demonstration of that might re-
quire larger system sizes than available here.
The dimension of the Hilbert space spanned by 2n

quasiparticles or quasiholes of the Pfaffian is of interest.
Our approach suggests the following counting. For quasi-
particles (quasiholes) there are n CFs in the 2nd Λ level
(n holes in the lowest Λ level) in each partition. These
can be arranged in the N−2n

2 + 2 single particle orbitals
((N + 2n)/2 orbitals) in

gn−qp =

(

N−2n
2 + 2
n

)

, gn−qh =

(

N+2n
2
n

)

(3)

distinct ways. Considering both layers, we get a total of
1
2g(g+1) states. On the quasihole side, these are not all
linearly independent, and the dimension of the Hilbert
space spanned by them is smaller than the above num-
ber. The space of quasihole states in the BCF formalism
can in fact be shown to be identical to the ones studied
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FIG. 2. (color online) Comparison of exact states and the trial
functions at ν = 1/2 for the 3-body interaction (left panels)
and at ν = 5/2 for the Coulomb interaction (right panels).
The blue dots show the exact eigenvalues of the Hamiltonian
and the black lines show the expectation value of energy per
particle for the BCF trial wave functions. (When there are
several BCF states at a given L, we diagonalize the interaction
in that basis.) Here and in the next figure, the number at the
bottom indicates the overlap of the lowest energy BCF wave
function with the exact lowest energy eigenstate in each L
sector, and the integer at the top is the dimension of the L
sector. The Coulomb energies per particle are quoted in units
of e2/l, where l =

√

~c/eB is the magnetic length, and include
the interaction with the positively charged background. Top
panels: Incompressible state and neutral excitations at 2Q =
2N − 3; middle: two quasiparticles at 2Q = 2N − 2; bottom:
four quasiparticles at 2Q = 2N − 1.

previously.6,17 The linear dependences in BCF quasiholes
are therefore analogous to those demonstrated by Nayak
and Wilczek17 in fixed quasihole position basis, and have
relevance to the braid statistics of the quasiholes. For
quasiparticles, in contrast, we find that all wave func-
tions constructed above are linearly independent for all
2n values that we have tested,18 implying (2n)!/2(n!)2

distinct states for 2n quasiparticles at fixed locations (as
opposed to 2n−1 for 2n quasiholes at fixed locations).
This is contrary to the generally accepted view (with-
out rigorous proof) that the quasihole and quasiparticles
have same braiding properties. A possible resolution of

FIG. 3. (color online) Comparison of the BCF wave func-
tions with exact eigenstates of 3 body interaction (left) and
Coulomb interactions (right). Top three rows show the results
for (a) the incompressible states and neutral excitations, (b)
two quasiholes, and (c) two quasiparticles at ν = 4/7. Bot-
tom two panels show the results for (d) incompressible states
and neutral excitations and (e) two quasiholes at ν = 3/5.
In the right panel of (b), the overlap at L = 5 refers to the
projection onto the lowest two almost degenerate states.

this discrepancy is that, although linearly independent,
some of the basis states are pushed up to a high energy,
and the structure of the low energy subspace is consistent
with that of quasiholes. We do not see evidence for the
emergence of a low energy band in our numerical results,
but cannot rule out such a possibility for larger systems.
Other wave functions have been constructed for the

quasiparticles of the Pfaffian state. Hansson et al.
19 have
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proposed a wave function that is, in spirit, similar to
BCF wave functions. They use a conformal field theory
prescription for constructing CF quasiparticle for 1/320

and apply it to the Pfaffian wave function in its anti-
symmetrized bilayer form. Their wave functions are not
identical to BCF, however, as indicated by the fact that
they obtain the same counting of states for quasiparti-
cles as for quasiholes. Bernevig and Haldane21 have used
certain clustering properties to propose a wave function
for quasiparticles of the 5/2 state. For ν = 1/3, their
prescription produces a wave function identical to Jain’s
wave function for a single quasiparticle, but not for two
or more quasiparticles, indicating that our BCF wave
functions are in general different from theirs as well.
We next come to the incompressible FQHE states at

ν = 2n/(3n+1). We consider the fractions 4/7 and 3/5,
related to states with two and three filled Λ levels in each
partition, which correspond to total flux 2Q = 7N/4− 4
and 2Q = 5N/3 − 5, respectively. As a first nontrivial
test, the exact ground states are uniform, L = 0 states
at these flux values for all cases we are able to test. Fig.
3 displays a comparison of our wave functions with the
exact eigenstates for the ground state as well as neutral
and charged excitations. For the 3-body interaction, our
BCF wave functions have a high overlap with the ground
state and the low energy excitations. The results are sig-
nificant given the fairly large dimensions of the Hilbert
space (Fig. 3), demonstrating that the BCF wave func-
tions continue to nicely match the solutions of the 3-body
interaction even away from 1/2.
The BCF wave functions also provide a good descrip-

tion of the second LL Coulomb solutions. Especially no-
table is the comparison for 2 + 3/5 FQHE, where the
BCF ground state has an overlap of 98.6% with the ex-
act Coulomb ground state for 18 particles, and its energy
(per particle) -0.43979 e2/l deviates by 0.04% from the
exact Coulomb energy -0.43997 e2/l. The wave function

of Read and Rezayi9, which occurs at 2Q = (5/3)N − 3,
has overlaps of 0.98 and 0.94 for N = 15 and 18 par-
ticles. If we assume particle hole symmetry, which is
exact in the absence of LL mixing, all these results
carry over to the hole conjugate state at 2 + 2/5. An-
other generalization of the Pfaffian state has been con-
structed by Bonderson and Slingerland10 by multiply-
ing

∏

j<k(zj − zk)
2p−1PLLL

∏

j<k(zj − zk)
2Φn, the CF

wave functions for bosons22 at ν = n/[(2p + 1)n ± 1],
by the Pfaffian factor. (The − sign refers to nega-
tive flux attachment.23) This produces a 2/5 state at
2Q = (5/2)N + 2 which has an overlap of 0.91 with the
N = 14 ground state.10 These three states (as well as the
standard CF state of Jain) occur at different shifts, and
thus are topologically distinct. Only one of these, if any,
may be valid for the actual Coulomb state at 2 + 2/5,
and further investigation, e.g. a comparison of excita-
tions, will be needed to discriminate between them.

Generalization of Eq. 1 to an mth order interparti-
tion zero, which amounts to replacing the cross factor
in Eq. 2 by

∏

j,k(zj − wk)
m, will produce BCF states at

2ν∗/[(2p+m)ν∗ ± 1]. Multipartite analogs of Eq. 1 can
also be straightforwardly constructed, and will represent
CF multiplet formation. Turning on the longer range
part of the 3-body interaction has been shown to break
the pairs to produce free composite fermions.24
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