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The distribution of waiting times between elementary tunneling events is of fundamental impor-
tance for understanding the stochastic charge transfer processes in nano-scale conductors. Here we
investigate the waiting time distributions (WTDs) of periodically driven single-electron emitters and
evaluate them for the specific example of a mesoscopic capacitor. We show that the WTDs provide
a particularly informative characterization of periodically driven devices and we demonstrate how
the WTDs allow us to reconstruct the full counting statistics (FCS) of charges that have been trans-
ferred after a large number of periods. We find that the WTDs are capable of describing short-time
physics and correlations which are not accessible via the FCS alone.

PACS numbers: 02.50.Ey, 72.70.+m, 73.23.Hk

Introduction.— Investigating the electrical fluctuations
in a nano-scale conductor is an attractive method to
probe and characterize the physical mechanisms and cor-
relations that determine a given quantum transport pro-
cess [1]. In one approach, the stochastic number of trans-
ferred particles during a long time interval, the so-called
full counting statistics (FCS), is studied [2]. FCS al-
ready has a significant history in the theory of mesoscopic
physics, and recent measurements of current fluctuations
in sub-micron devices have shown that FCS is no longer
just an interesting theoretical concept [3]. It is also be-
coming an important experimental tool to examine inter-
action and coherence effects in nano-scale systems under
out-of-equilibrium conditions.

The FCS, however, does not provide a complete picture
of a charge transport process on all relevant time scales.
Conventionally, FCS is defined in the long-time limit,
where a large number of charges have passed through
the conductor. Only the zero-frequency components of
the current fluctuations can then be addressed and im-
portant short-time physics may be lost. Recently, sys-
tematic theories of finite-frequency FCS have been de-
veloped in order to calculate frequency-dependent noise
and higher-order cumulants [4], but at this point these
methods are still restricted to systems without any ex-
plicit time-dependence. An alternative and particularly
intuitive characterization of the charge transfer process is
provided by the distribution of time delays between sub-
sequent physical events, also known as the waiting time
distribution (WTD).

While WTDs have been studied intensively in other
fields of science, e. g. in single molecule chemistry [5, 6]
and in quantum optics [7, 8], they have only received
very limited attention within the field of quantum trans-
port. Exceptions include a few theoretical works on non-
driven systems [9–11], but a conceptually simple example
of a nano-scale electronic system where the usefulness of
WTDs is clearly demonstrated has to date been missing.
In this Letter, we show that the WTDs of periodically
driven single-electron emitters, Fig. 1, provide a very
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FIG. 1: (Color online) Single-electron emitter and waiting
time distribution. a) Nano-scale system coupled to source (S)
and drain (D) electrodes. Only a single electron at a time
can occupy the nano-scale system, e. g., because of strong
Coulomb interactions. Uni-directional transport takes place
from source to drain due to the periodically modulated rates
ΓS(t) and ΓD(t). b) Current pulses in the source (blue) and
drain (red) electrodes together with illustrations of the corre-
sponding waiting times ∆t (dashed lines) between elementary
tunneling events, absorption (a) and emission (e).

useful view on the charge transfer statistics and corre-
lations in such systems. In particular, we evaluate the
WTDs of a mesoscopic capacitor [16–18], which serves
as a prime example of the usefulness of WTDs. We de-
rive expressions for the WTDs which are applicable also
to certain types of quantum pumps [12–14] and nano-
electromechanical systems [15]. We demonstrate how the
WTDs not only allow us to reconstruct and obtain the
FCS of emitted electrons, but additionally they contain
information about the charge transfer process on short
time-scales which is not available in the FCS alone. As
we demonstrate the WTDs describe the charge transfer
process on all important time scales.

System.— We focus on systems consisting of a source
and a drain electrode coupled to a nano-scale conductor,
Fig. 1a, biased such that single-electron transport is uni-
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directional from the source to the drain. The tunneling
rates to and from the conductor, ΓS(t) and ΓD(t), re-
spectively, are time-dependent. The probability P (t) for
the conductor to be occupied by an electron obeys the
evolution equation

∂tP (t) = −ΓD(t)P (t) + ΓS(t)[1 − P (t)] , (1)

where 1 − P (t) is the probability for the conductor to
be empty. This model suffices to illustrate the basic con-
cepts of WTDs which are of interest here. We concentrate
on systems, similar to the ones mentioned in the Intro-
duction, where the tunneling rates are periodic in time,
such that Γα(t) = Γα(t+T ), α = S,D, with T being the
period.
Waiting time distributions.— We consider the wait-

ing times between different tunneling events, Fig. 1b.
These consist of events, where the conductor either ab-
sorbs an electron from the source or emits an electron via
the drain. Due to the probabilistic nature of the charge
transfer, the waiting time ∆t between such events is it-
self a random variable. We use wea(∆t, t0) [wae(∆t, t0)]
to denote the probability for the first emission event to
occur at time ∆t + t0 given that absorption occurred at
the random earlier time t0 [and similar for absorption
following emission]. The same definitions apply to the
WTDs for tunneling events of the same type, wee(∆t, t0)
and waa(∆t, t0). Since the occupation of the conductor is
either 0 or 1, two events of the same kind cannot happen
simultaneously and wee(0, t0) = waa(0, t0) = 0 for all t0.
For non-driven systems, where the tunneling rates are
time-independent, translational invariance with respect
to time implies that the WTDs do not depend on t0 [10].
To calculate the WTDs we first express the source and

drain mean currents at time t0 as 〈IS(t0)〉 = ΓS(t0)[1 −

P (t0)] and 〈ID(t0)〉 = ΓD(t0)P (t0). The currents are
proportional to the probabilities of absorbing and emit-
ting an electron, respectively. Additionally, we need
the conditional currents, e. g., 〈IaD(∆t, t0)〉 = ΓD(t0 +
∆t)P a(∆t, t0). Here, P

a(∆t, t0) is the survival probabil-
ity of an electron at time t0 + ∆t given that it was ab-
sorbed at time t0, such that P a(0, t0) = 1. The survival
probability P a(∆t, t0) obeys Eq. (1) with ΓS(t) = 0, i.
e., ∂∆tP

a(∆t, t0) = −ΓD(t0 +∆t)P a(∆t, t0). The WTD
between absorption and emission is now wea(∆t, t0) =
Nea〈IS(t0)〉〈IaD(∆t, t0)〉, where Nea is a normalization
constant. The WTD is T -periodic in the second time
argument, wea(∆t, t0 + T ) = wea(∆t, t0). This allows
us to consider only the finite time interval t0 ∈ [0, T ]
and choose the normalization constant Nea, such that∫ T

0
dt0

∫∞

0
d(∆t)wea(∆t, t0) = 1.

At this point, the WTD depends not only on the wait-
ing time ∆t, but also on the absolute time t0 at which
absorption occurred. We are only interested in the wait-
ing time itself and therefore integrate out t0. Defining

f =
∫ T

0 dt0f(t0) for a T -periodic function f(t0), we find
for the WTD between absorption and emission

wea(∆t) = Nea〈IS(t0)〉〈IaD(∆t, t0)〉. (2)

Similar reasoning for the WTD between emission and
absorption leads to the equivalent expression

wae(∆t) = Nae〈ID(t0)〉〈IeS(∆t, t0)〉, (3)

with the conditional current 〈IeS(∆t, t0)〉 = ΓS(t0 +
∆t)P e(∆t, t0). Here P e(∆t, t0) is the survival probabil-
ity of the empty state. Proceeding along the same lines
for the WTDs between events of the same kind, we find

waa(∆t) =Naa

∫ ∆t

0

d(∆t′)〈IS(t0)〉〈IaD(∆t′, t0)〉〈IeS(∆t−∆t′, t0 +∆t′)〉,

wee(∆t) =Nee

∫ ∆t

0

d(∆t′)〈ID(t0)〉〈IeS(∆t′, t0)〉〈IaD(∆t−∆t′, t0 +∆t′)〉,

(4)

where the constants Naa and Nee ensure the normaliza-
tions

∫∞

0 d(∆t)waa(∆t) = 1 and
∫∞

0 d(∆t)wee(∆t) = 1,
respectively. In the expression for waa(∆t) [wee(∆t)], ∆t′

is the time interval between the first absorption [emis-
sion] event and the intermediate emission [absorption]
event which finally is followed by the second absorption
[emission] event after the total waiting time ∆t.

Mesoscopic capacitor.— We now illustrate our find-
ings in terms of a specific example: a mesoscopic ca-
pacitor consisting of a nano-scale cavity coupled to ex-

ternal reservoirs via a quantum point contact [16, 17].
When subject to fast periodic gate voltage modulations,
the capacitor can absorb and re-emit single electrons at
giga-hertz frequencies. The system can be described by
Eq. (1) taking ΓS(t) = Γ and ΓD(t) = 0 in the first half
of the period, and ΓS(t) = 0 and ΓD(t) = Γ in the sec-
ond half [18, 19]. The tunneling rate Γ can be controlled
experimentally by adjusting electrostatically the opening
of the quantum point contact.

Following the steps described above we obtain a simple



3

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0  10  20  30  40  50  60  70  80
 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0  2  4  6  8  10  12

P(tee)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  1  2  3  4  5  6  7  8

P(tee)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.6  0.8  1  1.2  1.4

P(tee)

test(x*T)

t / Tt / T t / T t / T

I

I
I I

ee
∆

w
  (

  t
) Numerics Envelope

∆ ∆ ∆ ∆

Analyticsb) d)c)a)

= 0.99

= 0.46
= 0.24 = 0.05

Γ Τ = 0.2

Γ Τ = 10

Γ Τ = 2 Γ Τ = 1

FIG. 2: (Color online). Waiting time distribution (WTD) for the mesoscopic capacitor. We show the WTD between subsequent
emission events wee(∆t) for different values of the tunneling rate Γ in units of the inverse period of the driving T−1. The mean
charge emitted per period (the mean current) 〈〈I〉〉 is also indicated. The analytic result, given by Eq. (6), is compared to
numerical simulations of the charge transport. For large values of Γ, a), the charge transport is highly regular and periodic
with the mean waiting time equal to the period, 〈〈∆t〉〉 = T . As Γ is reduced, b), several peaks appear in the WTD. For even
smaller values of Γ, c) and d), the mean waiting time is much larger than the period, 〈〈∆t〉〉 ≫ T , and the overall shape of the
WTD is determined by the envelope curve shown in blue. The mean charge emitted per period is then much smaller than 1.

expression for the WTD between emission and absorption
events

wae(∆t) =
Γ ε⌊∆t/T⌋

2(1− ε)

{
e−|ξae| − ε2e|ξae|

}
, (5)

where ε = e−ΓT/2, ξae = Γ[∆t− (⌊∆t/T ⌋+ 1/2)T ], and
⌊x⌋ is the integer part of x. The result contains two
independent structures: an internal structure (in curly
brackets) which is periodic with T and an envelope (given
by ε⌊∆t/T⌋) which is responsible for an exponential decay
of the WTD for large waiting times ∆t. For the WTD
between two emission events we find

wee(∆t) =
Γ⌊∆t+T/2

T ⌋ε⌊
∆t−T/2

T ⌋

2

{
e−|ξee| − ε2e|ξee|

}
(6)

with ξee = Γ[∆t − (⌊∆t/T ⌋ + 1)T ]. Again, the WTD
consists of an envelope function and an internal structure.
Our analytic results are confirmed by numerical sim-

ulations of the mesoscopic capacitor, Fig. 2. For large
tunneling rates, Fig. 2a, the transport process is predom-
inantly regular and periodic with one electron emitted
almost every cycle. The WTD has a single peak centered
around the period ∆t ≃ T . The peak, however, is not
sharp due to the jitter in the emission process, causing
phase noise [18]. As the tunneling rate is decreased, Fig.
2b, a more complicated structure appears with several
equidistant peaks separated by the period. Two emis-
sion events must be separated by at least half a period
implying that wee(∆t) = 0 for ∆t < T/2. Interestingly,
this short-time behavior is not visible in the noise spec-
trum of the capacitor found in Ref. [19]. For even smaller
tunneling rates, Fig. 2c,d, the charge transport becomes
increasingly random, and subsequent electron emissions
are typically separated by several periods. The current
fluctuations are then shot-noise like and the overall shape
of the WTD is determined by the envelope function of the

approximate form ∆te−(Γ/2)∆t. This corresponds to the
WTD for the case, where both tunneling rates are kept
constant as ΓS(t) = ΓD(t) = Γ/2 for all t. As we show
below, much of this information is not available in the
FCS alone.
Full counting statistics.— To connect the WTDs

to the FCS, the probability P(n,N) of emitting n
electrons during a large number of periods N ≫
1, we assume that maximally a single electron
can be emitted during a period. This is the
case for the mesoscopic capacitor considered above.
We can then write the probability distribution as
P(n,N) =

∑
m1,...,mn

w̃ee(m1) · · · w̃ee(mn)δm1+...+mn,N ,
where w̃ee(m) is the coarse-grained WTD for the num-
ber of periodsm between two subsequent emission events.
The Kronecker delta δm,N expresses the constraint that
the sum of periods between emission eventsm1+. . .+mn

must equal the total number of periods N . We have as-
sumed that the counting of emitted electrons starts right
after an emission event, but the specific choice of ini-
tial condition is not important for the FCS after a large
number of periods.
Next, we introduce the cumulant generating function

(CGF) S(χ,N) = log
∑

n P(n,N)eiχn whose derivatives
with respect to the counting field χ at χ = 0 yield the
cumulants of n as 〈〈nk〉〉 = ∂k

iχS(χ,N)|χ→0. Addition-
ally, we define the discrete Laplace transform of w̃ee(m),
ˆ̃wee(z) =

∑
m w̃ee(m)e−mz and the corresponding CGF

of m, Wee(z) = log ˆ̃wee(−z), which similarly delivers the
cumulants of m as 〈〈mk〉〉 = ∂k

zWee(z)|z→0. We can then
express the CGF of n as

eS(χ,N) =
1

2πi

∫ iπ

−iπ

dz
ezN

1− eiχ+Wee(−z)
. (7)

In the large-N limit, the integral is determined by the
particular pole z = z0(χ) with z0(0) = 0 that solves the
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FIG. 3: (Color online). FCS of the mesoscopic capacitor. The
normalized current cumulants Fk = 〈〈Ik〉〉/〈〈I〉〉, k = 2, 3, 4,
were obtained from numerical simulations (FCS) as well as
from Eq. (9) using both numerical (WTD) and analytical
(Analytics) results for the coarse-grained WTD. Dashed lines
indicate values of ΓT corresponding to the panels of Fig. 2.

equation

iχ+Wee(−z) = 0 , (8)

such that S(χ,N) → Nz0(χ). The electron current
I ≡ n/N is the number of emitted electrons n over the
number of periods N , and z0(χ) thus generates the cu-
mulants of the current, i. e., 〈〈Ik〉〉 = ∂k

iχz0(χ)|χ→0. For
the mesoscopic capacitor, the large-N limit is reached for
N ≫ max{1, 1/ΓT }.
Equation (8) demonstrates an important and intimate

connection between fluctuations in the current of emitted
electrons I and the number of periods m between emis-
sion events. In general, the equation may be difficult to
solve for z = z0(χ), but it provides us with a simple and
systematic way of relating the current cumulants to the
cumulants of m: taking consecutive derivatives of the left
hand side with respect to the counting field χ evaluated
at χ = 0, we find for the average current 〈〈I〉〉 = 1/〈〈m〉〉
and the (normalized) current cumulants Fk = 〈〈Ik〉〉/〈〈I〉〉

F2 =
〈〈m2〉〉

〈〈m〉〉2
,

F3 = 3
〈〈m2〉〉2

〈〈m〉〉4
−

〈〈m3〉〉

〈〈m〉〉3
,

F4 = 15
〈〈m2〉〉3

〈〈m〉〉6
− 10

〈〈m2〉〉〈〈m3〉〉

〈〈m〉〉5
+

〈〈m4〉〉

〈〈m〉〉4
.

(9)

For non-driven systems, the number of periods m should
be replaced by the continuous waiting time ∆t. We
then recover the known relations 〈〈I〉〉 = 1/〈〈∆t〉〉 and
F2 = 〈〈∆t2〉〉/〈〈∆t〉〉2 [8], see also Ref. [6]. Our derivation,
however, allows us to determine current cumulants of any
order.
In Fig. 3 we show the FCS for the mesoscopic capaci-

tor. We performed separate numerical simulations of the

FCS and the WTD, and for comparison we then used
Eq. (9) to obtain the normalized current cumulants Fk

from the coarse-grained WTD. Additionally, from Eq.
(6) we found analytically the CGF of m, Wee(z) =
z + 2 log[(1 − ε)/(1 − εez)], and again used Eq. (9) to
obtain the Fk’s. The figure confirms the validity of Eq.
(9) and clearly illustrates that the FCS can be obtained
from the coarse-grained WTD. Importantly, the proce-
dure cannot be reversed: The WTD cannot be obtained
from the FCS. Moreover, comparing Figs. 2 and 3, sub-
stantial information about the charge transfer process is
obviously lost in the FCS. In the phase noise regime,
ΓT = 10 (corresponding to Fig. 2a), the current cumu-
lants are close to zero due to the regular emission of elec-
trons. However, contrary to the WTD, the cumulants
are not sensitive to the jitter in the emission process. As
the tunneling rate is lowered, ΓT = 2 (Fig. 2b), several
peaks appear in the WTD, but this is also not visible
in the FCS, neither is the fact that two emission events
must be separated by at least half a period. In the shot
noise regime, ΓT = 1, 0.2 (Fig. 2c,d), the cumulants ap-
proach the limiting values Fk → (1/2)k−1 corresponding
to a Poisson process with an effective charge of 1/2. This
is also a very different characterization compared to the
one provided by the WTDs.

Conclusions.— We have shown that the distribution
of waiting times between elementary tunneling events is
a useful tool to probe and characterize the charge fluc-
tuations and correlations of periodically driven single-
electron emitters on all important time-scales. As a spe-
cific example, we have considered a mesoscopic capaci-
tor for which we demonstrated that the WTDs contain
considerable additional information compared to what is
available in the FCS alone.
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