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We predict a dynamic metallization effect where an ultrafast (single-cycle) optical pulse with a
. 1 V/Å field causes plasmonic metal-like behavior of a dielectric film with a few-nm thickness.
This manifests itself in plasmonic oscillations of polarization and a significant population of the
conduction band evolving on a ∼ 1 fs time scale. These phenomena are due a combination of both
adiabatic (reversible) and diabatic (for practical purposes irreversible) pathways.

PACS numbers: 73.20.Mf 42.65.Re 72.20.Ht 77.22.Jp

Latest advances in the ultrafast optics have recently at-
tracted a great deal of attention. Ultrashort pulses have
been successfully employed for monitoring and manip-
ulation of electronic processes in atomic and molecular
structures.1 Significant efforts have been directed toward
exploring the potential of ultrashort (∼ 100 as to ∼ 1−10
fs in duration) pulses in application to condensed mat-
ter dynamics2–8, in particular, to plasmonic metal and
dielectric nanostructures.9–11

We have recently predicted that dielectric nanofilms
subjected to strong but sufficiently slow (adiabatic) elec-
tric fields undergo a reversible change resembling a quan-
tum phase transition to a state that exhibits metallic
optical properties.12 We have called this phenomenon
metallization. The minimum duration of such an adia-
batic field depends exponentially on the thickness of the
nanofilm and is in the range from & 10 fs to ∼ 10 ns for
a film thickness from a few nm to ∼ 10 nm.12

Both from the fundamental point of view and for ap-
plications to ultrafast nanoelectronics, the metallization
by much faster optical fields is of great interest. In this
Letter, we theoretically predict a new effect that we call
dynamic metallization, where a single-cycle optical pulse
incident on a ∼ 2 nm dielectric nanofilm with a normal
polarization and a field . 1 V/Å causes a population of
the conduction band and metal-like plasmonic polariza-
tion oscillations on the optical-period time scale. This
effect is caused by both adiabatic (reversible) and di-
abatic (dissipative) excitation pathways involving band
anticrossings and adiabatic evolution between them.

A comprehensive solution of the ultrafast electron dy-
namics in strong optical fields would require many-body
quantum kinetics, rendering this problem extremely com-
plicated. To simplify it, we rely on the fact that the
characteristic inelastic electron-scattering time is on the
order or greater than the surface plasmon decay time τn,
which is τn & 10 fs for metals – see, e.g., Fig. 1 (a) in
Ref. 13. Using ultrashort excitation pulses with duration
τ ≪ τn, we avoid any significant effect of the electron
inelastic scattering. This allows us to treat the electron
dynamics as Hamiltonian. The evolution of the system in

this case is convenient to describe by the density matrix

ρ̂(r′, r; t) =
∑

i≤iF

Ψi(r
′, t)Ψ∗

i (r, t) , (1)

where if denotes the Fermi-surface state, i.e., the high-

est occupied state for the zero-field Hamiltonian Ĥ0, and
Ψi(r

′, t) are the one-electron wave functions. These sat-

isfy the Schrödinger equation i~Ψ̇i = Ĥ(t)Ψi, where Ĥ(t)
is the Hamiltonian depending on time t due to the optical
field, and the dot denotes the derivative over t.
Consider a thin nanofilm where the energy bands are

split into subbands due to the quantum confinement in
the direction normal to the film plane. We assume that,
due to the material symmetry, the electron wave func-
tion can be factorized into normal and parallel to the
film. Assuming a normal optical electric field E = E(t),
the one-particle Hamiltonian of the transverse motion is

Ĥ(E) = Ĥ0 − E d̂, where d̂ is the dipole operator.
Consider the adiabatic basis of states ψi(E) that di-

agonalize the instantaneous Hamiltonian, Ĥ(E)ψi(E) =
Ei(E)ψi(E), where Ei(E) are the adiabatic energies. We
employ the Kronig-Penney model for an insulator with
Eg = 4.8 eV band gap at the zero field (simulating di-
amond) whose adiabatic subband energies Ei(E) of the
valence (red) and conduction (blue) bands are shown in
Fig. 1 (a) as functions of the applied field E . Calculations
are done for a l = 2 nm film, which is realistic thickness,
e.g., for the gate oxide in field-effect transistors.
We expand wave functions Ψi(t) in the adiabatic ba-

sis, Ψi(t) =
∑

j exp[−iϕj(t)]a
(i)
j (t)ψj (E(t)), where a

(i)
j (t)

are the expansion coefficients with the initial condition

a
(i)
j (0) = δij , and ϕj(t) = −(1/~)

∫

Ej (E(t)) dt is the adi-
abatic phase. Then the Schrödinger equation becomes

ȧ
(i)
j = −

∑

k 6=j

Θ̇jkexp [−iϕjk(t)] a
(i)
k , (2)

Θ̇jk ≡ −Ėdjk (E) /Ejk (E) , (3)

where the adiabatic dipole matrix elements, tran-
sition energies, and relative phases are djk(E) =
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FIG. 1: (a) Energy spectrum of the nanofilm as a function of
the adiabatically applied electric field. The occupied valence
subbands are shown in red, the empty conduction subbands
are in blue. (b) The diabatic coupling matrix element Θ̇ik

between band-edge subbands [see Eq. (3)] for different pulse
amplitudes E0, as indicated on the panel.

〈ψk(E)|d̂0|ψj(E)〉 and Ejk(E) = Ej(E)−Ek(E), ϕjk(t) =
ϕj(t)− ϕk(t), correspondingly.
Under the adiabatic conditions12, a strong electric field

causes the band gap Eg to decrease. The valence and
conduction bands experience anticrossing at the metal-
lization field Em = 0.75 V/Å with the anticrossing gap
∆Em = 0.45 eV – see Fig. 1 (a). If the field is increased
adiabatically above Em, the electrons are adiabatically
(reversibly) transferred to the conduction band (hole)
states and in space across the film. This is the met-
allization transition where the optical properties of the
nanofilm resemble those of a plasmonic metal.12 If the
field is adiabatically switched off, the system returns to
its ground state. The condition of the adiabaticity is ev-
ident from Eqs. (2)-(3) and is tp ≫ ~/∆Em, where tp
is the time needed for the field E(t) to pass through the
anticrossing, in full agreement with Ref. 12.
In the opposite case of a fast diabatic passage of the

anticrossing, the Schrödinger equation (2) for the valence
and conduction band-edge subbands, v and c, can be in-
tegrated yielding the population of the conduction band

nc(t) = sin2Θvc [E(t)] n/nsb , (4)

where n is the electron density and nsb is the number
of the occupied subbands, nsb = 9 in the present model.
Such rapid fields, in contrast to the adiabatic case,12 do
not induce the metal-like polarization: there is no spatial
population transfer across the nanofilm.
We consider the electron dynamics of a nanofilm sub-

jected to an ultrafast field where both the adiabatic and
diabatic processes contribute. The fastest dynamics is
driven by single-cycle light pulses with duration τ ∼ 1 fs,
which have recently been achieved.14 Here, we model a
single-cycle pulse E(t) by a waveform15

E(t) = E0e
−u2 (

1− 2u2
)

, u ≡ t/τ , (5)

where the amplitude is E0, and the pulse duration is τ .
The pulse integral is zero,

∫∞

−∞
E(t)dt = 0, as should be.

For such a pulse, in Fig. 1 (b) we display the diabatic

coupling matrix element Θ̇ik between the valence and
conduction band-edge subbands. Note that Θ̇ik ∝ 1/τ .

-2 -1 0 1 2 3 

-1 

-0.5 

0.5 

1 

1.5 

(a) E0=0.4 V/Å

100×nc/n

P/E0
P/E0  (AA)

τ = 0.85 fs

t/τ 

100×nc/n (DA)

-2 -1 0 1 2 3 -1 

1 
2 
3 
4 
5 
6 
7 

(b) E0=0.7 V/Å

t/τ 

φ=0.05 π

τ = 0.85 fs 
P/E0  (AA)

100×nc/n (DA)

100 nc/n

P/E0

-2 -1 0 1 2 3 -2 

2 
4 
6 
8 

10 
12 

E0=0.94 V/Å (c) 

t/τ 

φ=0.38 π

τ = 0.85 fs 
P/E0  (AA)

100×nc/n (DA)

100 nc/n

P/E0

-2 -1 0 1 2 3
-3

3

6

9

12
(d)E0 = 0.94 V/Å

τ = 3.4 fs

t/τ

φ = 1.5 π

P/E0  (AA)

100×nc/n (DA)

100×nc/n

P/E0

FIG. 2: Polarization P and conduction-band population nc as
functions of time t for various E0 and τ . Normalized pulse field
E(t)/E0 is shown by blue line. Normalized population nc(t)/n
(scaled ×100) is displayed by the red curve; the same in DA is
shown by the dashed gray curve. Relative polarization P/E0

is displayed by the green line; the same in AA is given by the
dashed yellow line. The pulse length is τ = 0.85 fs for (a)-(c)
and τ = 3.4 fs for (d).

The peaks of the diabatic coupling element Θ̇ik are at the
adiabatic metallization points (band-edge anticrossings),
and they grow with the excitation-pulse amplitude.

Now let us turn to the dynamics of the system excited
by an ultrashort pulse with τ = 0.85 fs (the mean fre-
quency ~ω0 = 2~/τ = 1.55 eV). This is illustrated in
Figs. 2 (a)-(c) where we show conduction band popu-

lation nc and polarization P = Tr{d̂ρ}/V , where V is
the nanofilm’s volume, as functions of time t for different
pulse-field amplitudes E0. For comparison, we also show
the excitation waveform and results obtained in the adi-
abatic (AA) and diabatic (DA) approximations.

As Fig. 2 (a) shows, for field E significantly below
the adiabatic metallization threshold, Em = 0.75 V/Å,
the AA polarization12 and DA population (4) follow the
pulse. The computed polarization P (green curve) is
close to the adiabatic case except for a small delay and
low-amplitude oscillations on the pulse trailing edge with
frequency ≈ Eg/~. This is due to the short duration of
the pulse, which leaves at the end a partial coherence
between the valence and conduction bands. The popu-
lation nc (red curve) is small and dramatically retarded
with respect to both the pulse and the DA curve, which
is characteristic of the perturbative excitation.

At the threshold of the adiabatic metallization, E ≈
Em, as illustrated in Fig. 2 (b), the conduction band pop-
ulation nc dramatically increases. The calculated depen-
dence nc(t) (red line) agrees well with the DA, except for
the residual population after the pulse. The significant
deviation of nc(t) from the DA (gray dash line) starts
at the moment of the second anticrossing on the trailing
pulse tail (t/τ ≈ 0.1) where the diabatic coupling peaks
– cf. Fig. 1 (d). This adiabaticity violation causes the
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significant residual population ncr = nc(t ≫ τ) and is
dependent on the adiabatic phase ϕ as will be discussed
below in conjunction with Fig. 4.

In Fig. 2 (b), the polarization P(t) is retarded by an al-
most quarter pulse length (≈ π/2 in phase) with respect
to the driving pulse, which implies a strong absorption.
There also coherent oscillations after the end of the exci-
tation pulse. All this is characteristic of plasmonic metal
systems.9,16 The polarization oscillations exhibit beat-
ings between the frequency of the interband and much
slower intraband transitions. The latter are caused by
the pulse imprinting its frequency by polarizing the hot
carriers in the conduction band. We call this effect the

dynamic metallization. It is an ultrafast and dissipative
strong-field transition to a plasmonic metal-like behavior.

A similar phase delay between the excitation field and
the polarization oscillations has been computed and at-
tributed to the appearance of free electrons in the time-
dependent density-functional theory17 of breakdown in
bulk dielectrics subjected to high optical fields. Note
that such a breakdown for quasi-stationary fields was in-
troduced by Zener.18 Importantly, the present dynamic
metallization in thin films is fundamentally different. It
is based on the adiabatic contribution to polarization, de-
pends critically on the film thickness, and occurs at much
lower intensities: our field E . 1 V/Å corresponds to the
radiation intensity I . 3 × 1013 W/cm2, in contrast to
I ∼ 1015 W/cm2 in Ref. 17.

For the 0.85-fs pulse with amplitude E0 = 0.94 V/Å,
which is significantly greater than the adiabatic
metallization-threshold field Em = 0.75 V/Å [Fig. 2 (c)],
the dynamic metallization phenomena become even more
developed. The magnitudes of population nc and po-
larization P increase. The field time dependence nc(t)
shows a pronounced saturation between the metalliza-
tion (anticrossing) points at t/τ ≈ ±0.2. The residual
population forms due to the adiabaticity violation at the
anticrossing at t/τ ≈ 0.2 and is relatively large because
of the large diabatic coupling at this instance – cf. the
corresponding (blue) curve in Fig. 1 (d). The polariza-
tion shows a pronounced plasmonic metal-like behavior:
an approximately quarter-oscillation delay with respect
to the excitation pulse and the oscillations with a lower
frequency, which is close to the pulse mean frequency ω0.

The excitation dynamics for a longer pulse with τ = 3.4
fs is shown in Fig. 2 (d). The main difference from panel
(c) is that the polarization P(t) peaks almost simultane-
ously with the excitation pulse maximum, as characteris-
tic of the adiabatic metallization – cf. Ref. 12. Still there
are the residual population ncr and oscillations of P(t)
after the end of the excitation pulse, which imply non-
adiabatic processes occurring at the level anticrossings.

For the strongly-nonlinear and dispersive problem un-
der consideration, a useful measure of the magnitude of
the system’s polarizability can reasonably be defined as
the effective permittivity ε0 = 1 + 4πP0/E0, where P0

is the maximum value of the polarization in the process.
This maximum of P(t) is generally delayed in time with
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FIG. 3: Effective permittivity ε0 as a function of pulse am-
plitude E0 (a) and inverse pulse duration 1/τ (b). The label
AA denotes a result of the adiabatic approximation.
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FIG. 4: Relative residual population of the conduction band
ncr/n as a function of the pulse length τ . The green curve is
the result of the full numerical computation, the blue curve
is the analytical result with two band-edge subbands, and
the red with four. Arrows show the adiabatic phase ϕ. (a)
E0 = 0.94 V/Å and (b) E0 = 1.2 V/Å.

respect to that of E(t). For the shorter pulses in Figs.
2 (b)-(c), this delay is approximately ≈ 1/4 of the oscil-
lation length (≈ π/2 in phase), which implies a strong

dissipation (whose heat production is
∫

Ṗ(t)E(t)dt).
In Fig. 3 (a)-(b), we plot ε0 as functions of the

excitation-pulse amplitude E0 and duration τ . For very
short pulses with τ ≤ 0.85 fs, ε0 slowly increase with
E0 due to contribution of perturbative nonlinear absorp-
tion. The magnitude ε0 ∼ 20 is rather large because of
the wide, high-frequency spectrum of the short pulses.
Close to and above the adiabatic metallization thresh-
old, E0 & Em = 0.75 V/Å, this effective permittivity
dramatically increases for longer pulses with τ & 2 fs,
suggesting that it is dominated by the adiabatic metal-
lization mechanism. In fact, for τ = 5 fs, the dependence
ε0(E0) resembles that for the adiabatic permittivity12 [cf.
the blue and dashed blue lines in Fig. 3 (a)]. Note that
the appreciable oscillations in the dependence of ε0 on
the pulse duration τ seen for longer times in Fig. 3 (b)
are due to the interference of the excitation amplitudes
at the two anticrossings (at the leading and trailing edges
of the pulse). These are analogous to the Ramsey fringes,
as discussed below for the residual conduction-band pop-
ulation ncr in conjunction with Fig. 4.
In Fig. 4, we display the dependence of the residual

(after the pulse end) population ncr on the excitation
pulse length τ . A striking feature of this dependence is
the presence of high-contrast oscillations. These have a
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very clear physical origin. In the adiabatic picture,12

when the pulse leading-edge field E(t) approaches the
metallization threshold (causing the anticrossing of the
adjacent valence- and conduction-band subbands), the
valence electrons are shifted in space to one surface
of the nanofilm in the direction of the field where the
electrons occupy the quantum-bouncer states.12 When
the field increases above this metallization threshold,
the electron population is coherently transferred to the
opposite surface.12 This creates polarization oscillating
with the transition frequency between the valence- and
and conduction-band edges, ωvc(t) = [Ev(t)− Ec(t)] /~,
which then adiabatically evolves with time t. The phase
accumulated by these oscillations between the time tm1

of the anticrossing passage at the leading pulse-edge and

that at the trailing edge is ϕ =
∫ tm2

tm1

ωvc(t)dt.

If ϕ is such that the electrons at the moment tm2 are
shifted to the initial (in the direction of the maximum
pulse field) surface of the nanofilm, then there is a large
probability of their return back to the valence band, and
the minimum of ncr is observed. Otherwise, the fringe
maximum is reached. Thus these oscillations is analogous
to the well-known Ramsey fringes. As indicated in Fig.
4, the adjacent minima and maxima of the ncr(τ) fringes
are indeed separated by the phase change ∆ϕ = π. As
one can see from Fig. 4, these fringes are described ana-
lytically reasonably well with two and very well with four
band-edge subbbands taken into account.
To conclude, in this Letter we have predicted a

new effect: ultrafast dynamic metallization of dielec-
tric nanofilms. A single-cycle ultrafast (duration ∼ 1

fs) optical pulse with the normal electric field of a .
1 V/Å amplitude incident on a dielectric nanofilm (here,
a diamond-crystal film with thickness ∼ 2 nm), induces
a plasmonic metal-like dynamics that develops during an
ultrashort period on the order of the pulse’s duration.
The required normal incident field can be achieved ei-
ther by a grazing incidence angle or using a metal layer
adjacent to the dielectric nanofilm.19 For pulses of 1− 2
fs or longer, the metallization is characterized by a large,
metal-like polarization oscillating with optical frequen-
cies. There is also a significant residual population of
the conduction band and polarization oscillations extend-
ing beyond the pulse end, which strongly depend upon
and can be coherently controlled by the adiabatic phase
ϕ. Thus the dynamic metallization is due to the com-
bination and mutual influence of both the rapid adia-
batic (reversible) and diabatic (dissipative) mechanisms.
This dynamic metallization effect can find applications
in lightwave electronics,20 in particular, to create a field-
effect transistor controlled by light’s electric field with a
∼ 100 THz bandwidth.
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