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We uncover the field-theoretical origin of symmetry relations for multifractal spectra at Anderson
transitions and at critical points of other disordered systems. We show that such relations follow
from the conformal invariance of the critical theory, which implies their general character. We also
demonstrate that for the Anderson localization problem the entire probability distribution for the
local density of states possesses a symmetry arising from the invariance of correlation functions of
the underlying non-linear σ-model with respect to the Weyl group of the target space of the model.
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More than half a century after its discovery, Ander-
son localization [1] remains a vibrant research field. One
of the central research directions is the physics of An-
derson transitions [2], including metal-insulator transi-
tions and transitions of quantum-Hall type (i.e. between
different phases of topological insulators). Apart from
electronic conductors in semiconductor structures, exper-
imental realizations include localization of light [3], cold
atoms [4], ultrasound [5], and optically driven atomic sys-
tems [6]. On the theory side, the field received a strong
boost through the discovery of unconventional symme-
try classes and the development of a complete symmetry
classification of disordered systems [2, 7–9]. These classes
are characterized by additional particle-hole and/or chi-
ral symmetries. Examples include disordered supercon-
ductors and graphene.
A remarkable property of Anderson transitions is the

multifractality of wave functions, describing their strong
fluctuations at criticality. Specifically, in d dimensions,
the wave function moments show anomalous multifractal
(MF) scaling with respect to the system size L,

Ld〈|ψ(r)|2q〉 ∝ L−τq , τq = d(q − 1) + ∆q, (1)

where 〈. . .〉 denotes the disorder averaging and ∆q

are anomalous MF exponents distinguishing the criti-
cal point from a simple metallic phase (where ∆q ≡ 0).
Closely related is the scaling of moments of the local den-
sity of states (LDOS) ρ(r),

〈ρq〉 ∝ L−xq , xq = ∆q + qxρ, (2)

where xρ ≡ x1 controls the scaling of the average LDOS,
〈ρ〉 ∝ L−xρ. First steps towards experimental determi-
nation of MF spectra have been made recently [5, 6, 10].
In Ref. [11], an exact symmetry for MF exponents

∆q = ∆1−q, (3)

was derived for any critical system in the conventional
Wigner-Dyson (WD) classes as a consequence of a more

general relation [12, 13] for the LDOS distribution func-
tion (and thus, for the LDOS moments),

P(ρ) = ρ−3P(ρ−1), 〈ρq〉 = 〈ρ1−q〉. (4)

Eq. (4) is exact at the level of the non-linear σ-model and
is fully general otherwise, i.e. it is equally applicable to
metallic, localized, and critical systems. While in general
σ-models are approximations to particular microscopic
systems, Eq. (3) is exact in view of universality of the
critical behavior [11]. See also [14].
The goal of the present work is to reveal the field-

theoretic basis underlying the symmetry relations (3, 4),
and to generalize them to a broader class of systems.
First, using arguments arising from conformal invariance
at the transition, we show that relations analogous to
(3) are valid for a wide class of critical points in disor-
dered systems (that need not be Anderson transitions)
characterized by multifractality. Second, focusing on the
problem of Anderson localization, we demonstrate that
Eqs. (3, 4) are manifestations of the Weyl group symme-
try of the non-linear σ-model theory. Finally, we use this
to generalize Eqs. (3, 4) to the unconventional symmetry
classes C and CI (in the notation of Refs. [7, 8]). At the
end we describe applications of our results to a number
of specific disordered systems.
We begin by presenting a general argument based on

(global) conformal invariance of a critical system in d
dimensions. Consider a system at criticality character-
ized by operators Oq representing moments of an observ-
able of interest. In the case of Anderson localization on
which we focus, this observable is the LDOS, and Oq

corresponds to ρq, but one can apply the argument to a
broader class of systems. Generically, the spectrum xq is
convex, x′′q < 0 (primes denote derivatives with respect to
q), satisfies x0 = 0, and becomes negative at sufficiently
large (positive or negative) values of q [2]. Therefore,
there is a single point q∗ (in addition to q = 0) such that
xq∗ = 0. Let us show that q∗ > 0. Indeed, it is easy to
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see that the derivative x′0 ≡ (dxq/dq)q=0 = α0 − d+ xρ,
where α0 ≡ (dτ/dq)q=0 = τ ′0 controls the scaling of a
typical wave function amplitude, |ψ2|typ ∼ L−α0 . Nor-
malization of the wave function implies that α0 > d [2].
In the WD symmetry classes where xρ = 0, this guar-
antees that x′0 > 0. In the unconventional classes, xρ
may be nonzero, with either sign. However, generaliz-
ing the conformal invariance argument from Ref. [15], we
can show that α0−d+xρ determines the typical localiza-
tion length in a quasi-1D geometry, implying again that
x′0 > 0. It follows immediately that q∗ > 0.
According to the definition of the operators Oq, their

operator product expansion has the form [16]

Op(r1)Oq(r2) ∼ |r1−r2|
xp+q−xp−xqOp+q

(r1 + r2
2

)

. (5)

In general, the operatorOp+q has non-trivial scaling with
the system size, 〈Op+q〉 ∝ L−xp+q ; the existence of neg-
ative scaling dimensions distinguishes disordered critical
points from conventional ‘unitary’ conformal field theo-
ries. However, in the case of p = q∗ − q, the operator
on the r.h.s. of (5) has zero scaling dimension xq∗ = 0.
Therefore, the correlation function 〈Oq∗−q(r1)Oq(r2)〉
does in fact not depend on the system size L (i.e. on
the infrared regularization of the theory). This allows us
to apply the standard argument from conformal invari-
ance [17] according to which the non-vanishing two-point
correlation function appearing in the expectation value of
(5) implies that the dimensions of the operators Oq∗−q

and Oq are equal, i.e.

xq = xq∗−q. (6)

This is the generalized symmetry relation for MF expo-
nents. Note that in the case of Anderson transitions the
symmetry holds in general for the LDOS exponents xq
(the scaling dimensions of local field operators) rather
than for the wave function exponents ∆q. (For the WD
classes xρ = 0, so that xq = ∆q.) The symmetry point
q∗/2 remains unspecified by the above argument.
Below we show that a stronger symmetry relation be-

tween moments of the LDOS, valid for non-linear σ-
models describing disordered systems in the WD classes
(A, AI, AII) as well as those in the Bogoliubov-de Gennes
classes with preserved spin rotation invariance (C, CI),

〈ρq〉 = 〈ρq∗−q〉, (7)

has a group-theoretic origin. As a result, the symmetry
point q∗/2 for these systems is determined solely by the
symmetry class and is independent of further details of
the problem (e.g., spatial dimensionality, presence or ab-
sence of topological order, and whether the system is in a
metallic, insulating, or critical phase). Before presenting
the proof, let us first ask the following question: Assum-
ing that we know that (7) holds with q∗ depending on the
symmetry class only, what is a simple way to find q∗? It

turns out that it suffices to analyze a zero-dimensional
σ-model, equivalent to a random matrix (RM) model.
To see this, let us consider a RM model and introduce

a small broadening δ ≪ ∆ (where ∆ is the mean level
spacing) for all levels. A level with energy ǫ gives a con-
tribution ∼ δ/(ǫ2 + δ2) to the LDOS ρ at zero energy. It
is easy to see that for small δ the zero-energy LDOS will
be governed by the level closest to zero. Thus, we get

〈ρq〉 ∝

∫

dǫ[δ/(ǫ2 + δ2)]qP (ǫ), (8)

where P (ǫ) is the distribution of the lowest energy level.
For RM ensembles one has P (ǫ) ∝ |ǫ|ml , where ml is the
multiplicity of the long roots for the symmetric space of
Hamiltonians. For all WD ensembles ml = 0, for class C
ml = 2 and for class CI ml = 1. Eq. (8) yields 〈ρq〉 ∝
δml+1−q for q > (ml + 1)/2, and 〈ρq〉 ∝ δq for q < (ml +
1)/2. This fixes the value of q∗ in the relation (7):

q∗ = ml + 1 =







1, WD classes,
2, class CI,
3, class C.

(9)

We turn now to the derivation of Eq. (7). The σ-mo-
dels are defined on symmetric superspaces G/K, where
G is a Lie supergroup and K is a compact subgroup
fixed by a Cartan involution [2, 8, 18]. We focus first
on the unitary WD class (A); in this case the σ-model
fieldQ(r) = g(r)σ3g(r)

−1 is a 4×4 supermatrix satisfying
Q2 = 1. Here g(r) ∈ G and σ3 is the third Pauli matrix
in the retarded-advanced (RA) space. The moments of
the LDOS at a point r0 are given by [12]

〈ρq〉 =

∫

DQ
[1

2

(

Q11−Q22+Q12−Q21

)

bb

]q

e−F(Q), (10)

where Q ≡ Q(r0), with indices 1,2 referring to the RA
decomposition and b,f to the boson-fermion one. The
factor e−F(Q) results from integrating out Q(r) at the
points r 6= r0 and generically breaks the symmetry from
G to K as a result of coupling the system to metallic
reservoir(s). The only important property of the func-
tion F(Q) is its invariance with respect to the group K,
i.e. F(kQk−1) = F(Q) for any k ∈ K. This follows
from the corresponding invariance of the action of the
σ-model, including the boundary terms ∝ Str σ3Q(r) ap-
pearing at points r coupled to leads. In Ref. [12] the
LDOS distribution function corresponding to (10) was
evaluated by using the “standard” (introduced by Efe-
tov) parametrization of the Q field [18], which led to
Eq. (4). In order to uncover the group-theoretic basis of
the symmetry, we will use an alternative parametrization.
It is based on the Iwasawa decomposition for symmet-
ric superspaces [19, 20] generalizing the corresponding
construction for classical non-compact symmetric spaces
[21]. By this decomposition, every element g ∈ G is rep-
resented as g = nak with n ∈ N , a ∈ A, and k ∈ K,
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where A is a maximal abelian subgroup for G/K, and N
is a nilpotent group. The decomposition is unique, once
the set of positive roots is fixed. (The corresponding root
vectors form the basis of the Lie algebra of N .)

It is convenient to switch to Q = Qσ3 and perform
a unitary rotation Q → Q̃ ≡ UQU−1 by the matrix
U = (1+ iσ1+ iσ2+ iσ3)/2 in the RA space, which cycli-
cally permutes Pauli matrices: UσjU

−1 = σj−1. The
combination of Qij entering Eq. (10) then becomes

(1/2)(Q11 −Q22 +Q12 −Q21)bb = Q̃22,bb. (11)

The Iwasawa decomposition of g leads to Q =
na2σ3n

−1σ3, where we used kσ3k
−1 = σ3 and aσ3a

−1 =
a2σ3. Upon the rotation Q → Q̃, this takes the form
Q̃ = ñã2σ2ñ

−1σ2, or explicitly

Q̃ =









1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 ∗ 1

















e2x 0 0 0
0 e2iy 0 0
0 0 e−2x 0
0 0 0 e−2iy

















1 0 0 0
∗ 1 0 0
∗ ∗ 1 ∗
∗ ∗ 0 1









,

(12)
where ∗ denote some non-zero matrix elements of nilpo-
tent matrices. The variables x and y (which corre-
spond to λ1 = cosh θ1 and λ2 = sin θ2 in the standard
parametrization [18]) parametrize the abelian group A.
This group is non-compact in the x-direction and com-
pact in the y-direction. It follows from (12) that the ma-
trix element (11) is equal to Q̃22,bb = e−2x. The integral
(10) for the LDOS moments thus becomes

〈ρq〉 =

∫

NA

DnDa e−2ρ(lna)e−2qxe−F(na2σ3n
−1σ3), (13)

where Dn and Da = dxdy are the invariant (Haar) mea-
sures on N and A, respectively. The factor e−2ρ(ln a) is
the super-Jacobian, with ρ(ln a) being the half sum of
positive roots; for the present case

ρ = −x+ iy. (14)

Next, we perform the n integration involving only the
last factor in the integrand of (13). For this purpose, we
use the Harish-Chandra integral theorem stating that for
a K-invariant function [f(g) = f(kgk−1) for any k ∈ K]

∫

N

dnf(na) = eρ(ln a)If (a), If (a
w) = If (a). (15)

The central point is that the function If (a) is invariant
with respect to the action w : a → aw by any element
w ∈ W of the Weyl group W of G/K. The classical
version of the theorem (15) can be found, e.g., in [22]; the
supersymmetric generalization (that we actually need)
has been developed very recently [20]. The Weyl group
acts on the Lie algebra of A; its elements are reflections
with respect to hyperplanes orthogonal to roots. The

element that will be important for us here is the reflection
x→ −x. Substituting Eqs. (14, 15) into (13), we obtain

〈ρq〉 =

∫

dxdy e(1−2q)x−iy IF (x, y). (16)

Finally, by using the symmetry of IF (x, y) with respect
to x→ −x, we obtain Eq. (4).
Thus, the symmetry relation (4) previously derived for

the WD classes, is a consequence of the Weyl group in-
variance. We can now extend this result to two new
classes, namely C and CI. By inspecting the above deriva-
tion, one can see that the value of q∗ = 1 was determined
by the coefficient in front of x in the half sum of positive
roots ρ, Eq. (14). The analogous formulas for the classes
C and CI read ρ = −3x+ 2iy1 + iy2 and ρ = −2x+ 2iy,
reproducing the values of q∗ obtained from the RM ar-
gument, Eq. (9).
What about the remaining five symmetry classes? The

above derivation based on the Weyl group invariance is
not directly applicable to them because of a more compli-
cated structure of the σ-model target space. Specifically,
that space contains an additional U(1) factor in the case
of the chiral classes AIII, BDI, and CII, and a O(1) = Z2

factor for the classes D and DIII. More work is needed
to explore the peculiar physics of Anderson localization
in these symmetry classes.
The obtained symmetry relations are confirmed by a

large body of analytical and numerical results for vari-
ous disordered systems. For the WD classes, supporting
evidence based on 2 + ǫ expansion and simulations of a
power-law random banded matrix model was presented
in Ref. [11]. Since then, a wealth of numerical results on
the 2D Anderson transition in the symplectic class AII
[23], the integer quantum Hall transition (unitary class
A) [24], as well as the 3D transition in the orthogonal
class AI [25] have corroborated the relation (3).
A thoroughly investigated representative of symmetry

class C is the 2D spin quantum Hall (SQH) transition.
For this system, it was proven analytically that, in the
bulk, xρ = 1/4, ∆2 = −1/4, ∆3 = −3/4 [26, 27]. In
combination with the trivial values ∆0 = ∆1 = 0 this
yields x0 = x3 = 0, and x1 = x2 = 1/4, in agreement
with the symmetry relation (6) with q∗ = 3. Further-
more, these exponents have also been found for the SQH
surface multifractality, with the results x0 = x3 = 0 and
x1 = x2 = 1/3 [28], again respecting the symmetry. Fi-
nally, the MF spectrum at the 2D SQH transition was
studied numerically, both in the bulk and at the surface
[27, 29]. When expressed in terms of xq, the data per-
fectly agree with the symmetry relation (6).
There also exists a model in class CI that has been

studied in detail. This is the model of 2D Dirac fermions
coupled to a random SU(2) gauge potential which is de-
scribed by a Wess-Zumino-Witten theory [30] and repre-
sents physics at the surface of a disordered 3D topological
superconductor [31]. Critical exponents for this model
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are known exactly: xρ = 1/4 and τq = 2(q − 1)(1 − q/8)
[32], so that the LDOS MF spectrum reads xq = q(2 −
q)/4, which clearly satisfies Eq. (6) with q∗ = 2.
Further support for our results is provided by the

LDOS distribution of a quasi-1D system in contact with
a metallic reservoir. Far away from the contact the dis-
tribution of ln ρ is known to be Gaussian, with the ratio
var(ln ρ)/〈− ln ρ〉 equal to 2 for the WD classes, 2/3 for
class C, and 1 for class CI [33, 34]. By calculating the
moments 〈ρq〉, we recover Eqs. (7, 9) for these classes.
For the remaining five classes of Anderson localization,

as well as for critical MF systems of other origin, our
general arguments based on conformal symmetry, pre-
dict a weaker (valid at criticality only) relation (6) to
hold, with q∗ having the same degree of universality as
critical exponents normally have (i.e. they are controlled
by a particular fixed point rather than solely by the sym-
metry class). Several exactly solvable problems confirm
this. In particular, the model of 2D Dirac fermions in an
Abelian random vector potential (residing in chiral class
AIII) has [35] a parabolic MF spectrum with the sym-
metry point q∗/2 = 1/(4gA) depending on the disorder
strength gA. The same applies to the non-abelian SU(N)
(with N 6= 2) generalization of this model [32] (belong-
ing to class AIII as well) where the symmetry point is
N -dependent: q∗/2 = N/(2N − 2). Another example is
the MF spectrum of the Ising disorder variable at the 2D
Nishimori critical point, for which q∗ = 1 [36]. Further-
more, the MF spectra of the harmonic measure of critical
curves [37] can be obtained by introducing (conformal)
primary operators characterized by charges α (analogous
to our q) [38]; their conformal weights hα (analogs of our
xq) form a parabolic spectrum with a symmetry point α∗

depending on the central charge of the model.
To summarize, conformal invariance arguments reveal

the general character of the symmetry relation (6) for
critical disordered systems with MF scaling of moments
of observables (represented by local field operators Oq).
For the Anderson localization problem in the WD, C, and
CI classes a stronger symmetry relation (7) holds, which
is based on the Weyl group symmetry of the σ-model tar-
get space. This stronger relation is not restricted to criti-
cality, and is characterized by a symmetry point q∗/2 de-
pending on the symmetry class only. Future work should
clarify the impact of the Weyl group symmetry on scal-
ing dimensions of other composite operators, and explore
the role of the U(1) and O(1) degrees of freedom in the
chiral, D, and DIII classes.
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B 78, 195107 (2008).

[26] I.A. Gruzberg, A.W.W. Ludwig, and N. Read, Phys.

Rev. Lett. 82, 4524 (1999); E.J. Beamond, J. Cardy, and
J.T. Chalker, Phys. Rev. B 65, 214301 (2002).

[27] A.D. Mirlin, F. Evers, and A. Mildenberger, J. Phys. A
36, 3255 (2003).

[28] A.R. Subramaniam, I.A. Gruzberg, and A.W.W. Ludwig,
Phys. Rev. B 78, 245105 (2008).

[29] A.R. Subramaniam et al., Phys. Rev. Lett. 96, 126802
(2006).

[30] A.M. Tsvelik, Phys. Rev. B 51, 9449 (1995); M.J.
Bhaseen et al., Nucl. Phys. B 618, 465 (2001); A.W.W.
Ludwig, arXiv:cond-mat/0012189.

[31] A.P. Schnyder et al., Phys. Rev. B 78, 195125 (2008);
A.P. Schnyder, S. Ryu, A.W.W. Ludwig, Phys. Rev. Lett.
102, 196804 (2009).

[32] C. Mudry, C. Chamon, and X.-G. Wen, Nucl. Phys. B
466, 383 (1996); J.-S. Caux, Phys. Rev. Lett. 81, 4196
(1998).

[33] C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[34] P.W. Brouwer et al., Phys. Rev. Lett. 85, 1064 (2000).
[35] A.W.W. Ludwig et al., Phys. Rev. B 50, 7526 (1994).
[36] F. Merz and J.T. Chalker, Phys. Rev. B 66, 054413

(2002).
[37] B. Duplantier, Phys. Rev. Lett. 84, 1363 (2000).
[38] I. Rushkin et al., J. Phys. A: Math. Theor. 40, 2165

(2007); A. Belikov, I.A. Gruzberg, and I. Rushkin, ibid.
41, 285006 (2008).


