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Quantum lithography (QL) has been suggested as a means of achieving enhanced spatial resolution
for optical imaging, but its realization has been held back by the low multi-photon detection rates
of recording materials. Recently, an optical centroid measurement (OCM) procedure was proposed
as a way to obtain spatial resolution enhancement identical to that of QL but with higher detection
efficiency (M. Tsang, Phys. Rev. Lett. 102, 253601, 2009). Here we describe a variation of the OCM
method with still higher detection efficiency based on the use of photon-number-resolving detection.
We also report laboratory results for two-photon interference. We compare these results with those
of the standard QL method based on multi-photon detection and show that the new method leads
to superresolution but with higher detection efficiency.

PACS numbers:

The spatial resolution of optical imaging systems
has traditionally been considered to be limited by the
Rayleigh resolution criterion. One means of overcoming
this limit [1] is to make use of the photon correlations
that exist in certain quantum states of light. A specific
example of such an approach is the quantum lithogra-
phy (QL) proposal of Dowling and coworkers [2]. In
this approach, a path-entangled state of N photons (a
N00N state) is used to write an interference pattern onto
a recording material that responds by means of multi-
photon absorption (MPA), producing N -fold-enhanced
resolution as compared with a classical fringe pattern.
Experimental procedures for creating N00N states with
up to N = 5 photons by means of spontaneous paramet-
ric down conversion have been reported by several group
[3–7]. Experimental demonstrations of spatial superres-
olution through the QL procedure have, however, been
rather limited. In one approach, multi-photon absorbing
(MPA) lithographic materials are mimicked by using two
single-photon detectors operated in coincidence [8, 9]. In
another, poly(methyl-methacrylate) was used as a MPA
lithographic material for recording sub-Rayleigh interfer-
ence patterns, but only when excited by intense classical
light [10]. In order to realize true quantum lithography,
very sensitive lithographic materials that can respond by
MPA to weak quantum states of light are required. The
use of time-energy-entangled multi-photons can provide
significant enhancement of the MPA transition rate be-
cause of the near-zero variation in birth time [11]. There
has also been some uncertainty in the trade-off between
resolution enhancement and MPA enhancement [12–15].
In summary, true quantum lithography has yet to be re-
alized because of the low MPA efficiency of available ma-
terials.

Recently, Tsang [16] proposed an optical centroid mea-
surement (OCM) method for achieving spatial interfer-
ometric superresolution with much higher detection effi-

ciency than that of QL. Instead of using detectors that
respond by MPA as in quantum lithography, an array
of single-photon detectors followed by postprocessing is
used. The addresses of the N detectors that fire in re-
sponse to N incident photons are recorded, and the cen-
troid of the positions of those detectors is computed. A
histogram of the positions of optical centroids determined
by repeated measurements shows an interference pattern
with a resolution enhancement identical to that of the
QL method. Due to the use of single-photon detector
array and postprocessing, OCM is for the applications
of imaging, not lithography. If the pixel size of the de-
tector array is much smaller than the correlation area of
the entangled photons, the probability that the photons
arrive at different pixels is much larger than the proba-
bility that they arrive at same pixel. For this reason, the
detection efficiency of the OCM method is much higher
than that of the QL method, which relies on MPA.
In this Letter, we report the results of a proof-of-

principle experiment that demonstrates optical superres-
olution based on an improved version of Tsang’s OCM
method. The improvement comes about by implement-
ing a form of photon-number-resolving detection, which
leads to still higher efficiency than Tsang’s original pro-
posal. The interference fringes obtained by the OCM
method are found to show resolution enhancement iden-
tical to that of the QL method, but with higher detec-
tion efficiency. To the best of our knowledge, ours is the
first experimental demonstration of spatial resolution en-
hancement using the OCM method.
We next briefly review the theory of resolution en-

hancement by both the OCM and QL methods. Un-
der the one-dimensional (x) and monochromatic approx-
imations [13], the electric field operator on the detection
plane is given by

Ê(+)(x) = i

√

η

(2π)2

∫

dq â(q)eiqx, (1)
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where η = ~/(2ǫ0c
2T ) with T being the normalization

time scale. Here q and x are respectively the transverse
wavevector and transverse position on the detector plane.
The N00N state on the detector plane is given by

|N00N〉 =
1√
2N !

{

[

Â†
]N

+
[

B̂†
]N

}

|0〉 (2)

where Â† and B̂† represent the annihilation op-
erators of photons in modes A and B falling
onto the detector plane, respectively. Â† is
(1/

√
∆κ)

∫

dκ F ∗ [(κA + κ)/∆κ] â†(κ) with the mean x-

component of wavevector κA = κ0. Analogously, B̂
† has

κB = −κ0 and △κ is the uncertainty of the transverse
wavevector. F (q) is the normalized transverse wavevec-
tor profile of the photon packet. Note that [Â, Â†] =
[B̂, B̂†] = 1 and [Â, B̂†] = 0 for κ0 ≫ △κ. If we set
F (q) = (1/

√
π) exp

(

−q2/2∆κ2
)

, the N -photon, condi-
tional probability density for the QL method becomes

PC(x)=
〈
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On the other hand, the probability distribution for the
optical centroid is

PM (X)=

∫

dξ1 · · · dξN−1

〈

:

N
∏

n=1

Î(X + ξn) :

〉

=
N !ηN∆κ√
NπN+1

e(−N∆κ2X2) [1 + cos (2Nκ0X)] , (4)

where the centroid and relative-position coordinates are
defined as X = 1

N

∑N

n=1 xn and ξn = xn − X with
n = 1, · · · , N , respectively. PM (X) is a marginal prob-
ability density. We see that they both give the same
spatial resolution enhancement. However, the ratio of
probabilities for the two cases is

PM (x)δx

PC(x)δxN
=

1√
N

( √
π

∆κδx

)N−1

, (5)

where δx is the pixel size of detector. For typical situa-
tions in which the beam size is much larger than the pixel
size, one has ∆κδx ≪ 1. Therefore, PM (X) can be much
greater than PC(x). Note that this conclusion holds even
before taking account of the greatly different detection
efficiencies of single-photon and multi-photon detectors.
When these differences are taken into account, the OCM
method becomes even more favorable.
To provide an intuitive understanding of the tradeoffs

between the QL and OCM methods, we next present an
analysis based on the use of combinatorics. We suppose
that the correlation area of the photon field is M times
larger than the pixel size on the detector array and that

N entangled photons arrive at random positions on the
detector array within this correlation area. The total
number of combinations with repetition for N photons
falling on M pixels is Ctotal = (M+N−1)!/(N !(M−1)!).
Every such case occurs with equal probability 1/Ctotal

because of the assumption of random positions. There-
fore, the more combinations a particular method has, the
more efficient it is. For instance, quantum lithography re-
quires N -photon absorption, and the number of cases of
N photons falling onto the same pixel is CNPA = M . If
all N photons do not fall onto the same detector this
event will be lost, leading to decreased detection effi-
ciency. In the OCM method, however, a single-photon
detector array is used, and the number of combinations
of detecting N photons by N different pixels among
the M pixels is CSPA = M !/(N !(M − N)!). For small
pixel size or large correlation area (M ≫ N), the OCM
method will be much more efficient than the QL method
(Ctotal ∼ CSPA ≫ CNPA), as Tsang predicted.

In the laboratory, however, practical concerns may pre-
clude the pixel area from being much smaller than the
correlation area. Moreover, commonly available high-
sensitivity detectors are not photon-number resolving,
that is, they cannot distinguish between one and several
photons falling onto the detector. If more than one pho-
ton arrives at a given pixel, the single-photon detector
will count this as a single event, and fewer than N detec-
tors will register. Then the OCM protocol will discard
this event, leading to decreased measurement efficiency.
This loss of efficiency becomes increasingly more signifi-
cant for large photon numbers N or small values of M .

Loss of efficiency due to multi-arrivals at one pixel
can be eliminated by using a photon-number-resolving
(PNR) detector array. Recently, PNR detectors with
high quantum efficiency have been developed [17–19].
Using a PNR detector array with ability of measuring
the addresses of pixels that fire as well as the number
of photons at these pixels, an accurate optical centroid
of the detection process can be computed. The OCM
method with a PNR detector array has the number of
combinations with repetition for N photons falling onto
the array given by CPNR = (M +N − 1)!/(N !(M − 1)!).
This result indicates that the PNR detector array can use
all of the cases ofN photons arriving at the detector. The
PNR detector array will work like a MPA detector array
for M ∼ 1 and will be almost equal to the single-photon
OCM detector for M ≫ N .

We have performed experimental studies of superres-
olution for two-photon interference (that is, N = 2) for
both the QL and OCM methods. The experimental se-
tups are the same for both cases except for the detection
method, as shown in Fig. 1. A UV light beam at 400-nm
wavelength is generated by second-harmonic generation
of 100-fs pulses at 800-nm wavelength at repetition rate
of 82 MHz and is split into two beams by a beam splitter
(BS1). A 1.5-mm-thick BBO crystal is placed in each
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(mutually coherent) UV beam, and spontaneous para-
metric down conversion occurs randomly in each crystal
under type 1 collinear phase matching conditions. After
blocking the pump beams using interference filters (IF),
the photon number state |Ψ〉 in mode A and B is given
by

|Ψ〉 = |0〉A|0〉B + γ(|2〉A|0〉B + |0〉A|2〉B)/
√
2 + . . . , (6)

where γ is the probability of creating a photon pair
by parametric down-conversion. At low pump power,
γ is much smaller than unity, and we can thus ignore
multi-pair generation proportional to higher powers of
γ. The generated light is then well approximated as a
two-photon N00N state. This procedure for generating
the 2002 state is convenient because it avoids the need
for a maintaining the sensitive alignment of a Hong-Ou-
Mandel setup [3]. Moreover, strong photon flux can be
obtained by using long crystals or periodically poled crys-
tals [20]. We use a second beam splitter (BS2) to combine
these two beams with a small angle (θ ∼ 0.033◦) between
them. To increase the collection efficiency, two spherical
lenses with 10-cm focal length are located after each IF,
and each spherical lens is defocused by 0.5 mm to make
the correlation area larger than the pixel size. The mea-
sured correlation area has a diameter of approximately
0.5 mm.

The two detection systems were prepared using mul-
timode fibers (MMFs) with core and cladding diameters
of 62.5 µm and 125 µm, respectively. For the QL case
(see Fig. 1 (b)), a single MMF acting as a collector was
scanned in discrete steps of 50 µm across the detection
region using a motorized translation stage. The output of
this fiber was split into two additional MMFs whose out-
puts were monitored by two single-photon detectors op-
erating in coincidence [9]. The coincidence circuit counts
how many photon pairs arrive simultaneously at the po-
sition of the input fiber, thus emulating a two-photon
detector.

The OCM detection system was constructed as follows.
According to the OCM proposal, the detection system
should consist of a linear array of detectors each of which
can respond with high sensitivity to individual incident
photons. Detector arrays of this sort are not readily avail-
able. Instead, we simulated such a detection system by
using two MMFs of variable separation serving as detec-
tors, as shown in Fig. 1 (c). For a given fixed separation,
this fiber pair is scanned through the detection region
while coincidence counts are recorded. The coincidence
circuit counts how many photons arrive simultaneously at
the two spatially separated inputs. The centroid position
is located at the mean position of the two fibers. This
procedure is then repeated sequentially for other fiber-to-
fiber separations of 125, 250, 375, 500, and 625 µm. The
coincidence count rates at a given centroid position are
then summed for all fiber separations. In this manner we
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FIG. 1: (Color online) (a) Experimental setup for produc-
ing two-photon interference. The dashed lines indicate the
down-converted photon-pair fluxes, and the dashed box rep-
resents the detection system used to measure the two-photon
interference pattern. (b) The detection system for the QL
process. A coincidence measurement that mimics two-photon
absorption. (c) Detection system for the OCM procedure, as
described in the text. In each case, a cylindrical lens (CL) is
positioned in front of the detection systems to increase col-
lection efficiency and the coincidence window time was 7 ns.
APD = avalanche photodiode.

collect the same data that would have been collected (al-
though more rapidly) by a multi-element detector array.
To simulate a PNR detector array, we include the case
of a single collection fiber coupled to two single-photon
detectors (Fig. 1(b)) with that of two collection fibers of
variable separation (Fig. 1(c)).

Our experimental results are shown in Fig. 2. In
part (a) of the figure, we show the form of the classi-
cal, single-photon interference fringes. These results were
obtained using strongly attenuated laser light of 800-nm
wavelength, and serve as a reference. Under our experi-
mental conditions, the period of these classical interfer-
ence fringes was 0.69 mm. Next, two-photon interference
fringes were recorded using the QL detector of Fig. 1(b).
Both singles counts and coincidence counts are shown
in Fig. 2(b). The singles counts show a Gaussian pro-
file, whereas the coincidence counts exhibit an interfer-
ence pattern with a decreased period of about 0.34 mm.
Therefore, the QL method shows a factor-of-two increase
in spatial resolution as predicted [2] and observed previ-
ously in references [8] and [9].

Next, we repeated the measurement of the two-photon
spatial interference pattern using our OCM detection sys-
tem. The single- and two-photon count rates for MMFs
separated by 125 µm are shown in Fig. 2(c). Because of
the fiber separation, the single-photon data have differ-
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FIG. 2: (Color online) (a) Single-photon count rate for
strongly attenuated coherent-state light at an 800-nm wave-
length versus the detector position x. (b)-(d) Single-photon
(marked + and ×) and two-photon count rates for the 2002
state as measured by (b) the QL method of Fig. 1(b), (c) the
OCM method of Fig. 1(c), and (d) the OCM/PNR method
described in the text. For part (c) the two parallel MMFs
have a separation of 125 µm. The vertical arrows point the
positions of the maximum single-photon count rates. The
solid lines are theoretical fits to the data. The integration
time in each case was 10 seconds.

ent peak positions separated from each other by approx-
imately 125 µm. The period of the two-photon fringes
is approximately 0.34 mm, the same as the QL result,
demonstrating enhanced resolution by the OCM method.
The fitted curve for the two-photon coincidence counts is
a sinusoidal pattern weighted by a Gaussian function.
Measurements of the sort shown in Fig. 2(c) were re-
peated for the other fiber separations. We then add
all of these traces together to give the results shown in
Fig. 2(d). The two-photon interference fringes obtained
by the OCM method has about a 5.7-times larger fringe
amplitude than the QL results. The enhancement factor
depends on the value of the parameter M , which was 5.6
under our experimental conditions. Using this M value,
the ratio between CPNR and CNPA should be 3.3, but
because the coincidence detection efficiency of the QL
detection system in Fig. 1(b) was reduced by half due
to the 1 × 2 coupler, the expected enhancement factor
becomes 5.6, in good agreement with the observed value.

The enhancement factor will increase if one uses a de-
tector array of smaller pixel size or if one enlarges the
correlation area.
Since the non-classical N00N states have potentials of

providing N -fold-enhanced resolution as compared with
a classical fringe pattern even for N > 2 cases, the QL
and OCM methods are expected to scale well to higher
values of N . For the OCM method, however, the im-
plementation of the OCM method based on the use of
N detectors of variable separation provides a highly in-
efficient means of scaling to higher N , because of the
large number of detector configurations that must be
used. Nonetheless, the results presented here provide a
proof-of-principle demonstration that the OCM method
for N = 2 can provide superresolution with a two-fold
enhancement over the classical resolution limit. We have
also shown that the OCM method provides the same de-
gree of resolution enhancement as the QL method but
with higher efficiency. We feel that, when large arrays
of single-photon detectors become available, the OCM
method will be a powerful means of providing still greater
enhancement in resolution.
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