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We present a new formulation of one of the major radiative corrections to the weak charge of
the proton – that arising from the axial-vector hadron part of the γZ box diagram, ℜe2A

γZ . This

formulation, based on dispersion relations, relates the γZ contributions to moments of the F
γZ
3

interference structure function. It has a clear connection to the pioneering work of Marciano and
Sirlin, and enables a systematic approach to improved numerical precision. Using currently available
data, the total correction from all intermediate states is ℜe2A

γZ = 0.0044(4) at zero energy, which
shifts the theoretical estimate of the proton weak charge from 0.0713(8) to 0.0705(8). The energy
dependence of this result, which is vital for interpreting the Qweak experiment, is also determined.

PACS numbers:

As modern parity-violating (PV) experiments press to
ever improving levels of precision, they remain a vital
complement to direct tests of the Standard Model at the
high energy frontier. The classic example of this, involv-
ing precise measurements of parity violation in atoms,
led to a remarkably accurate determination of sin2 θW . A
complementary PV electron-proton scattering measure-
ment underway by the Qweak Collaboration [1] at Jef-
ferson Lab has the potential to increase the mass scale
associated with new physics to 2 TeV or higher, provided
that the critical radiative corrections are under control.
In this Letter we present a new formulation of the im-
portant γZ radiative corrections which allows for their
controlled, systematic evaluation.
Including electroweak radiative corrections, the proton

weak charge is defined, at zero electron energyE and zero
momentum transfer, as [2]

Qp
W = (1 +∆ρ+∆e)(1 − 4 sin2 θW (0) + ∆′

e)

+2WW +2ZZ +2γZ(0) , (1)

where sin2 θW (0) is the weak mixing angle at zero mo-
mentum, and the corrections ∆ρ, ∆e and ∆′

e are given in
[2] and references therein. The contributions 2WW and
2ZZ arise from the WW and ZZ box and crossed-box
diagrams, and can be computed perturbatively. They are
expected to be energy independent for electron scatter-
ing in the GeV range. By contrast, the γZ interference
correction 2γZ(E) depends on physics at both short and
long distance scales.
In the classic work of Marciano and Sirlin (MS) [3],

2γZ(0) was evaluated in a quark model-inspired loop cal-
culation using either a “perturbative” (p) or a “nonper-
turbative” (np) ansatz,

2γZ(0) = ve(M
2
Z)

5α

2π
Bp(np), (2)

where ve(M
2
Z) = (1 − 4ŝ2), and ŝ2 ≡ sin2 θW (M2

Z) =
0.23116 in the MS scheme [4].

The perturbative ansatz [3]

Bp = ln
M2

Z

m2
+

3

2
(3)

is the free quark model result, with m a hadronic mass
scale, and shows the leading-log behavior. For the non-
perturbative ansatz, Bnp = Km + Lm is the sum of a
long-distance part, Lm, and a short-distance part, Km,
with

Km =

∫

∞

m2

du

u(1 + u/M2
Z)

(

1−
αs(u)

π

)

. (4)

Here m is a mass scale representing the onset of asymp-
totic behavior at large loop momenta, and the factor
(1 − αs(u)/π) is the lowest-order correction induced by
the strong interactions. In Ref. [3] Lm is taken to be the
elastic nucleon (Born) contribution, which is evaluated
to be 2.04 using the same dipole form factors for both
the electromagnetic and axial-vector coupling. MS [3]
originally adopted the value Km = 9.6± 1, based on cal-
culations withm in the range 0.3–1.0 GeV. A more recent
calculation by Bardin et al. [5] sets 0.5 ≤ m ≤ 0.6 GeV,
over which Km varies from 9.20 to 9.17 using a 3-loop
evaluation of αs. Marciano [6] gives an updated value
for Bnp of 11.0 ± 1.0, but in view of the high momen-
tum scales in Eq. (4), suggests replacing α by α(M2

Z) in
Eq. (2). This value for 2γZ is the one adopted in Ref. [2],
and contributes almost half of the error in the theoretical
estimate Qp

W = 0.0713(8).

To progress in a systematic way beyond the approach
of MS [3], and to determine the dependence on energy E,
we present a new formulation of the box diagram contri-
bution in which the dominant part of the correction is ex-
pressed in terms of empirical moments of structure func-
tions. At forward angles one can compute 2γZ(E) from
its imaginary part using dispersion relations [7]. The
imaginary part depends on the PV ep → eX cross sec-
tion, which can be expressed in terms of the product of



2

leptonic and hadronic tensors. Following standard con-
ventions [4], the hadronic tensor can be written in terms
of the interference electroweak structure functions as

MWµν
γZ = −gµνF γZ

1 +
pµpν

p · q
F γZ
2 − iεµνλρ

pλqρ
2p · q

F γZ
3 , (5)

where p and q are the four-momenta of the proton and
exchanged boson, respectively. The F γZ

1,2 contributions
to 2γZ involve the vector hadron coupling of the Z, and
were recently computed in Refs. [7–10].

Our focus here is on the F γZ
3 contribution involving

the axial-vector hadron coupling of the Z. Following an
analogous derivation in Ref. [8], we can write

ℑm2
A
γZ(E) =

1

(2ME)2

∫ s

M2

dW 2

∫ Q2

max

0

dQ2

×
ve(Q

2)α(Q2)F γZ
3

1 +Q2/M2
Z

(

2ME

W 2 −M2 +Q2
−

1

2

)

,(6)

with s = M2+2ME and Q2
max = 2ME(1−W 2/s). The

real part is determined from the dispersion relation

ℜe2A
γZ(E) =

2

π

∫

∞

0

dE′
E′

E′2 − E2
ℑm2

A
γZ(E

′), (7)

which accounts for both the box and crossed-box terms.
Unlike the vector hadronic correction ℜe2V

γZ(E), which
vanishes at E = 0, the axial-vector hadronic correction
ℜe2A

γZ(E) remains finite, and is dominant in atomic par-
ity violation at very low electron energies [11].
We incorporate one further improvement over earlier

calculations by allowing for the Q2 dependence of α(Q2)
and sin2 θW (Q2) = κ(Q2) ŝ2 in Eq. (6) due to boson self-
energy contributions. Both quantities vary significantly
over the range of Q2 relevant to these integrals. The pho-
ton vacuum polarization expression is well-known, and
expressions for the universal fermion and boson contribu-
tions to κ(Q2) are given in Ref. [12]. Following Ref. [3],
we use effective quark masses to reproduce the hadronic

contribution of ∆α
(5)
had(M

2
Z) = 0.02786 obtained from dis-

persion relations [4], yielding κ(0) = 1.030. This is suf-
ficiently accurate for the purpose of calculating the box
contributions. In the numerical results that follow, the
effect of using α(Q2) and ve(Q

2) reduces the total contri-
bution to Eq. (7) by 17% relative to using α and ve(M

2
Z).

The imaginary part of 2A
γZ can be split into three re-

gions: (i) elastic (el) with W 2 = M2; (ii) resonances (res)
with (M +mπ)

2 ≤ W 2 <
∼ 4 GeV2; and (iii) deep inelastic

(DIS), with W 2 > 4 GeV2. Contributions from region
(i) can be written in terms of the elastic form factors as

F
γZ(el)
3 (Q2) = −Q2Gp

M (Q2)GZ
A(Q

2)δ(W 2 −M2). (8)

For the proton magnetic form factor Gp
M we use the re-

cent parametrization from Ref. [13] (the results are sim-
ilar if one uses a dipole with mass 0.84 GeV), and take
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FIG. 1: Real part of 2A

γZ(E) as a function of incident electron
energy E. Shown are the elastic (solid) and resonance (dot-
dashed) contributions. For the DIS part, the high-Q2, n ≥ 3
term (dotted) is negligibly small. The two Q2 < 1 GeV2

estimates (long and short dashes) show a very mild E depen-
dence. Not shown is the dominant high-Q2, n = 1 moment,
which is 32.8× 10−4, and is independent of E.

the axial-vector form factor to be GZ
A(Q

2) = −1.267/(1+
Q2/M2

A)
2 with MA = 1.0 GeV. A virtue of the dipole

forms is that the integrals (6) and (7) can be performed
analytically, which provides a useful cross-check.

To simplify notation in what follows, we denote ℜe2A
γZ

by 2
A
γZ , since that is the quantity of interest in Eq. (1).

The result for the elastic contribution 2
A(el)
γZ (E) is shown

in Fig. 1. It agrees exactly with the direct loop calcula-
tions of 2A

γZ in Refs. [14, 15], in which the intermediate
nucleon is off-shell. It also agrees exactly at E = 0 with
the value Lm = 2.04 if the parameters are adjusted to
correspond to those of MS [3].

For the resonance contributions 2
A(res)
γZ from region

(ii), we use the parametrizations of the transition form
factors from Lalakulich et al. [16], but with modified
isospin factors appropriate to γZ. These form factors
have been fitted to the Jefferson Lab pion electroproduc-
tion data (vector part) and pion production data in ν
and ν̄ scattering at ANL, BNL and Serpukhov (axial-
vector part). The parametrizations include the lowest
four spin-1/2 and 3/2 states in the first and second res-
onance regions, up to Q2 = 3.5 GeV2. At larger Q2 the
resonance contributions are suppressed by the Q2 depen-
dence of the transition form factors, which is stronger
for the dominant ∆(1232) resonance than for the higher-
mass resonances [16]. The resulting resonance contribu-

tion 2
A(res)
γZ (0) is smaller than the elastic term at E = 0,

but decreases less rapidly with increasing energy. Vary-
ing the Q2 dependence of the axial-vector form factors,
which is not well determined, has a negligible effect on
these results.

To compute the DIS contributions from region (iii) it
is convenient to interchange the order of integration in
(6) and (7), in which case the integral over energy can be
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performed analytically [9],

2
A(DIS)
γZ (E) =

2

π

∫

∞

0

dQ2 ve(Q
2)α(Q2)

Q2(1 +Q2/M2
Z)

×

∫ xmax

0

dx F γZ
3 (x,Q2) f(r, t), (9)

f(r, t) =
1

t2
[

log
(

1− t2/r2
)

+ 2t tanh−1 (t/r)
]

,

with r ≡ 1 +
√

1 + 4M2x2/Q2, t ≡ 4MEx/Q2, and
xmax = Q2/(W 2

min − M2 + Q2). For t = 0, we find
f(r, 0) = (2r− 1)/r2. In the free quark model limit with

F γZ
3 = (5/3)x δ(1 − x), Eq. (9) then gives exactly the

perturbative result of Eq. (3) for E = 0 (ignoring the Q2

dependence of α and ve).
To proceed, we divide the Q2 integral of the full ex-

pression (9) into a low-Q2 part, where the structure

function F γZ
3 is relatively unknown, and a high-Q2 part

(Q2 > Q2
0), where at leading order (LO) the structure

functions can be expressed in terms of valence quark dis-
tributions qv = q − q̄ [4],

F
γZ(DIS)
3 (x,Q2) =

∑

q

2 eq g
q
A qv(x,Q

2). (10)

At high Q2 and low E, the integrand in (9) can be ex-
panded in powers of x2/Q2, yielding a series whose coeffi-
cients are structure function moments of increasing rank,

2
A(DIS)
γZ (E) =

3

2π

∫

∞

Q2

0

dQ2 ve(Q
2)α(Q2)

Q2(1 +Q2/M2
Z)

×

[

M
(1)
3 (Q2) +

2M2

9Q4
(5E2 − 3Q2)M

(3)
3 (Q2) + . . .

]

.(11a)

For completeness, we also quote the result for the vector
hadronic correction,

2
V(DIS)
γZ (E) =

2ME

π

∫

∞

Q2

0

dQ2 α(Q2)

Q4(1 +Q2/M2
Z)

×

[

M
(2)
2 (Q2) +

2

3
M

(2)
1 (Q2) +

2M2

3Q4
(E2 −Q2)M

(4)
2 (Q2)

+
2M2

5Q4
(4E2 − 5Q2)M

(4)
1 (Q2) + . . .

]

. (11b)

In Eqs. (11) the moments of the structure functions are
defined as

M
(n)
i (Q2) ≡

∫ 1

0

dxxn−2FγZ
i (x,Q2), i = 1, 2, 3, (12)

where FγZ
i =

{

xF γZ
1 , F γZ

2 , xF γZ
3

}

. In approximating

the upper limit xmax on the x-integrals in Eqs. (11) by
1, the resulting error is less than 10−4 for Q2 > 1 GeV2.

The large-x contributions to M
(n)
i (Q2) become more im-

portant for large n; however, the higher moments are

suppressed by increasing powers of 1/Q2. In practice, the
integrals in Eqs. (11) are dominated by the lowest mo-
ments, with the 1/Q2 corrections being relatively small
in DIS kinematics.
Equations (11) are major new results which provide a

systematic framework within which to evaluate the ra-
diative corrections. For the axial-vector hadron part, the

lowest moment, M
(1)
3 (Q2), is the γZ analog of the GLS

sum rule [17] for νN DIS, which at LO counts the num-
ber of valence quarks in the nucleon. The corresponding
quantity for γZ is

∑

q 2 eq g
q
A = 5/3, so that at next-to-

leading order (NLO) in the MS scheme

M
(1)
3 (Q2) =

5

3

(

1−
αs(Q

2)

π

)

, (13)

M
(3)
3 (Q2) =

1

3

(

2〈x2〉u + 〈x2〉d
)

(

1 +
5αs(Q

2)

12π

)

,

where 〈x2〉q =
∫ 1

0 dxx2 qv(x,Q
2). Hence the lowest (n =

1) moment contribution to Eq. (11a) is identical to the
MS result [3] in Eq. (4). However, the parameter Q2

0 in
Eq. (11a) has a slightly different interpretation than the
mass parameter m2 of Eq. (4). Here Q0 corresponds to
the momentum above which a partonic representation of
the non-resonant structure functions is valid, and above
which the Q2 evolution of parton distribution functions
(PDFs) via the Q2 evolution equations is applicable. We
take Q2

0 = 1 GeV2, which coincides with the typical lower
limit of recent sets of PDFs [18, 19]. The computation of

the vector hadronic contribution to 2
(DIS)
γZ proceeds in a

similar manner, and will be discussed elsewhere [20].
To evaluate the moments in Eq. (11a) we use several

NLO parametrizations of PDFs determined from global
fits [18, 19]. The results are summarized in Fig. 1. Varia-
tions in the values of αs(M

2
Z) among the datasets consid-

ered had a negligible effect on the n = 1 value of 0.0033.
The n = 3 moments for different datasets are virtually
identical, and give negligibly small contributions.
The E dependent terms in Eq. (11a) should also be

small, since these depend on n ≥ 3 moments. However,
the expansion in Eq. (11a) is not strictly valid when E >
Q2

0/2M . To describe the E dependence in this region we

evaluate the difference 2
A(DIS)
γZ (E)−2

A(DIS)
γZ (0) in Eq. (9)

by replacing f(r, t) by f(r, t) − f(r, 0). The results are
indeed small for E in the few GeV region, as the dotted
line in Fig. 1 indicates.
For Q2 < Q2

0 a partonic description of the structure
functions is not valid. In particular, since the integral
overQ2 in Eq. (9) extends down toQ2 = 0, and the upper
limit on the x-integral, xmax, is also limited by Q2, one
requires the behavior of the structure functions at both
low x and low Q2. In the case of the vector F γZ

2 structure
function, conservation of the two vector currents requires
F γZ
2 ∼ Q2 asQ2 → 0. By contrast, F γZ

3 depends on both
vector and axial-vector currents, and the nonconservation
of the latter means that no similar constraint exists [16].
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FIG. 2: Total (el+res+DIS) axial-vector hadron correction
2

A

γZ(E) (labeled “A”) and the sum of axial and vector hadron
[8] corrections (labeled “V+A”), together with the E = 0
result of MS [3] (extended to finite E for comparison). The
vertical dashed line indicates the energy at Qweak kinematics.

In the absence of data on F γZ
3 (x,Q2) in the low-x,

low-Q2 region, we consider models for the possible x and
Q2 dependence, obeying the following conditions: (1)

F γZ
3 (xmax, Q

2) should not diverge in the limit Q2 → 0;

(2) F γZ
3 (x,Q2) should match the partonic structure func-

tion at Q2 = Q2
0. For the parametrization of Ref. [18] we

note that F γZ
3 (x,Q2

0) ∼ x−0.7 as x → 0. With this in
mind, we consider two models for Q2 < Q2

0.
Model 1 sets

F γZ
3 (x,Q2) =

(

1 + Λ2/Q2
0

1 + Λ2/Q2

)

F γZ
3 (x,Q2

0), (14)

which has the property that F γZ
3 (xmax, Q

2) ∼ (Q2)0.3 as
Q2 → 0. Here Λ2 is a parameter that can be adjusted to
examine the model sensitivity of the integral in Eq. (9).
For Λ2 in the range (0.4− 1.0) GeV2, we obtain a ±10%
variation in the values for 2A

γZ(E) shown in Fig. 1.

Model 2 freezes F γZ
3 at the Q2 = Q2

0 value for all W 2,

which is equivalent to setting F γZ
3 (x,Q2) = F γZ

3 (x0, Q
2
0),

with x0 = xQ2
0/

(

(1− x)Q2 + xQ2
0

)

. For this model, F γZ
3

is constant as Q2 → 0, and yields a 15% larger contribu-
tion to 2

A
γZ(E) than Model 1, as illustrated in Fig. 1.

The total correction to 2
A
γZ is given by the sum

(el+res+DIS), and is shown in Fig. 2 as a function of
E. As demonstrated, the E dependence arises predomi-
nantly from the elastic and resonance contributions. We
assign a very conservative uncertainty estimate equal to
twice the low-Q2 DIS value. This allows for uncertainties
in the resonance and low-Q2 DIS contributions, and in
the effect of the running coupling constants on the dom-
inant n = 1 contribution. The total contribution to 2

A
γZ

is 0.0044(4) at E = 0, and 0.0037(4) at E = 1.165 GeV
(the Qweak energy). This should be compared to the
value 0.0052(5) used in Ref. [2], which is assumed to be
energy independent. Also shown in Fig. 2 is the total

2γZ = 2
V
γZ +2

A
γZ using the result for 2V

γZ from Ref. [8],
which has an uncertainty that grows with E.
Our value shifts the theoretical estimate for Qp

W from
0.0713(8) to 0.0705(8), with a total energy dependent
correction 2γZ(E) − 2γZ(0) of 0.0040+0.0011

−0.0004 at E =
1.165 GeV. A similar uncertainty would be obtained us-
ing the estimate of 2V

γZ from Ref. [9], while a larger un-
certainty on the vector hadron correction was quoted in
Ref. [10]. These uncertainties can be reduced with future
PV structure function measurements at low Q2, such as
those planned at Jefferson Lab. The high precision deter-
mination of Qp

W would then allow more robust extraction
of signals for new physics beyond the Standard Model.
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