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Quasi-two-dimensional superconductors with tunable spin-orbit coupling are very interesting sys-
tems with properties that are also potentially useful for applications. In this Letter we demonstrate
that these systems exhibit undamped collective spin oscillations that can be excited by the appli-
cation of a supercurrent. We propose to use these collective excitations to realize persistent spin
oscillators operating in the frequency range of 10 GHz− 1 THz.
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Introduction. — Spin-orbit-coupled two-dimensional
(2D) electron gases (EGs) are the focus of great inter-
est in the field of semiconductor spintronics [1]. This
interest has been largely fueled by the hope to realize
the visionary Datta-Das “spin transistor” [2] in which
the on/off state is achieved by purely-electrical control of
the electron’s spin in a spin-orbit-coupled semiconductor
channel placed between ferromagnetic leads. Research
in spin-orbit-coupled 2DEGs has been recently revital-
ized by theoretical [3] and experimental [4] studies of the
spin Hall effect, in which a current traversing the sample
generates a spin-current in the orthogonal direction.

The study of the interplay between spin-orbit coupling
(SOC) and superconductivity in 2D systems, stemming
from the seminal works of Edelstein [5] and Gor’kov and
Rashba [6], has also gained impetus [7]. There is a large
variety of systems in which SOC and superconductiv-
ity coexist: two examples of great current interest are i)
2DEGs in InAs or GaAs semiconductor heterostructures
that are proximized by ordinary s-wave superconducting
leads [8, 9] – a class of systems which plays a key role
in the quest for Majorana fermions [10] – and ii) 2DEGs
that form at interfaces between complex oxides [11], such
as LaAlO3 and SrTiO3, which display tunable SOC [12]
and superconductivity [13].

Motivated by this body of experimental and theoretical
literature, we investigate the collective spin dynamics of
an archetypical 2DEG model Hamiltonian with Rashba
SOC and s-wave pairing [6], in the presence of repul-
sive electron-electron (e-e) interactions. In the absence
of superconductivity a Rashba 2DEG exhibits spin os-
cillations, which, at long wavelength and for weak re-
pulsive interactions, have a frequency ≈ 2αkF, α being
the strength of SOC and kF the 2D Fermi wavenum-
ber in the absence of SOC. These oscillations, however,
are damped and quickly decay due to the emission of
(double) electron-hole pairs, which, in the normal phase,
are present at arbitrary low energies. In this Letter we
demonstrate that in a Gor’kov-Rashba superconductor
(GRSC), collective spin oscillations continue to exist in
a wide range of parameters, and are undamped because
they lie inside the superconducting gap where no other
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FIG. 1: (color online) a) Response of a Cooper pair in the
λ = + chirality subband of a Gor’kov-Rashba superconductor
subjected to an oscillating magnetic field in the ŷ direction.
The solid circle is the Fermi surface and the black dot is the
origin of momentum space. The arrows labeled by “1”, “2”,
and “0” describe the orientation of the spins under the action
of a magnetic field that points up, down, or vanishes. Sponta-
neous oscillations are sustained, in the absence of a magnetic
field, by the internal exchange field. b) A supercurrent boosts
the Fermi surface in the x̂ direction (solid line) and creates
a magnetic field in the ŷ direction. As a result, spins begin
to oscillate around the new equilibrium orientation, indicated
by the thick red arrows.

excitation exists. Fig. 1 shows schematically the nature
of the spin oscillations in a GRSC. At variance with the
Cooper pairs of a standard s-wave semiconductor, the
pairs of a GRSC are in a mixture of singlet and triplet
states. It is this feature that enables the pairs to respond
to an oscillating magnetic field applied, say, in the ŷ di-
rection. In the course of the oscillation the spins of a
pair tilt in opposite directions, in a pair-breaking mo-
tion that creates a net spin polarization along the ŷ axis.
The spin polarization produces an exchange field, which,
if the electron-electron interaction is sufficiently strong,
sustains oscillations of the appropriate frequency in the
absence of an external field. The essential point is that
these oscillations are undamped as long as their frequency
falls below the quasiparticle gap: they will therefore dis-
play an extraordinarily long lifetime [14].

In order to excite these long-lived spin modes one could
in principle apply a short magnetic pulse, but there is
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also a purely-electrical method. Namely, a supercurrent
pulse applied, say, in the x̂ direction, will generate, via
the Edelstein effect [5] an effective magnetic field pulse
in the ŷ direction, and this should be sufficient to start
the spin oscillations. This excitation mechanism is illus-
trated in Fig. 1b). The Fourier spectrum of the super-
current pulse must not contain frequencies of the order of
(or larger than) twice the superconducting gap to avoid
the creation of quasiparticle excitations. We suggest that
the new collective spin mode can be used to realize “per-
sistent spin oscillators” operating in the frequency range
of 10 GHz − 1 THz (for superconductors with a critical
temperature in the range 10−1 − 10 K).

Model Hamiltonian and effective low-energy theory. —
We consider the following model Hamiltonian: Ĥ = Ĥ0+
Ĥp + Ĥe−e. Here Ĥ0 is the kinetic energy term given

by Ĥ0 =
∑
i,j

∫
d2r ψ̂†i (r) hij(r) ψ̂j(r), where (h̄ = 1

throughout this manuscript)

hij(r) =
(−i∇r)2

2m
δij +α [σij× (−i∇r)] · ẑ−µ δij . (1)

Here ψ̂†i (r) [ψ̂j(r)] creates (destroys) an electron with
real-spin label i =↑, ↓ and band mass m, α measures the
strength of Rashba SOC, σ = (σ1, σ2) is a 2D vector of
2× 2 Pauli matrices σa, µ is the chemical potential, and
ẑ is a unit vector normal to the 2D plane where electrons
are confined to move (the x̂−ŷ plane). Diagonalization of
Ĥ0 yields two bands, ξλ(k) = k2/(2m)+λαk−µ, λ = ±1
being the so-called “chirality” index. Rashba SOC forces
spins to lie on the x̂ − ŷ plane and to be perpendicular
to k at each point in momentum space [see Fig. 1a)].

The second term in the Hamiltonian Ĥ, Ĥp, is an s-
wave pairing Hamiltonian which is responsible for super-
conductivity: it physically corresponds to an attractive
interaction of strength −g with g > 0, which is active
only in a thin shell of momentum space around the Fermi
surface. The microscopic mechanism responsible for the
appearance of the pairing term is not important here.
The problem defined by Ĥ0 + Ĥp has been studied by
Gor’kov and Rashba [6] who calculated the in-plane and
out-of-plane spin susceptibilities χ‖(⊥)(q = 0, ω → 0).
Due to a mixture of spin-singlet and spin-triplet chan-
nels stemming from SOC, the GRSC develops a finite
and anisotropic spin response.

In this Letter we study the spin response of a GRSC
at finite frequency ω, taking into account also repulsive
e-e interactions described by the last term in the Hamil-
tonian Ĥ,

Ĥe−e = V

∫
d2r ρ̂↑(r)ρ̂↓(r) , (2)

where V > 0 and the spin-resolved density operator is de-
fined by ρ̂i(r) = ψ̂†i (r)ψ̂i(r). We are interested in study-
ing the collective dynamics of the system described by
Ĥ assuming that it remains in a phase characterized by

a hard (finite in any direction of space) gap, despite the
presence of repulsive e-e interactions. These lead to an
effective reduction of the parameter g, in the spirit of the
Anderson-Morel pseudopotential [15].

We now derive an effective low-energy action corre-
sponding to the full Hamiltonian Ĥ in terms of spin
degrees-of-freedom only. The first step is to decouple
the two quartic terms, Ĥp and Ĥe−e, by means of a suit-
able Hubbard-Stratonovich (HS) transformation (see e.g.
Refs. 16, 17). For the pairing term Ĥp we introduce the
complex HS field ∆0(r, τ), which describes the supercon-
ducting order parameter [17]. We do the decoupling in
the chiral basis: this allows us to work with Cooper pairs
that are protected by time-reversal symmetry [6]. Trans-
forming back to the real-spin basis we get spin-triplet
pairing in addition to the regular spin-singlet pairing [6].

It is useful to rewrite Ĥe−e as [16],

Ĥe−e =
V

4

∫
d2r

{
ρ̂2(r)−

[ 3∑
a=1

ŝa(r)ζa

]2}
, (3)

where ρ̂(r) =
∑
i ρ̂i(r) is the total-density operator,

ŝa(r) =
∑
i,j ψ̂

†
i (r)σaijψ̂j(r) is the usual spin-density op-

erator, and ζ = (ζ1, ζ2, ζ3) is an arbitrary unit vector in
3D space. To decouple Ĥe−e by means of HS transfor-
mation we introduce four real HS fields [16]: φ(r, τ) and
M(r, τ), which are conjugate to density fluctuations and
spin fluctuations, respectively.

The notation is considerably simplified by defining a
four-component spinor Ψ̂†(r, τ) = [ψ̂†↑ ψ̂

†
↓ ψ̂↑ ψ̂↓] in real-

spin space. The exact microscopic action corresponding
to Ĥ after the HS transformation can now be expressed in
a compact form as (the variables r, τ will be suppressed
from now on when needed for brevity)

S =

∫ β

0

dτ

∫
d2r
[ |∆0|2

g
+

φ2 +M ·M
V

+ Ψ̄
(−G−1

0 + Σ0)

2
Ψ
]
, (4)

where β = (kBT )−1, Σ0(r, τ) = iφ(τ3 ⊗ 11σ), and Ψ̄ is
the Grassmann variable corresponding to the fermionic
field Ψ̂†. Here G−1

0 is the Green’s function of the problem

defined by Ĥ0 + Ĥp [6] and is a 4× 4 matrix given by

−G−1
0 = ∂t11τ ⊗ 11σ + τ3 ⊗ h+ α {Γ× (−i∇) · ẑ}

+
τ1 + iτ2

2
⊗∆ +

τ1 − iτ2

2
⊗ ∆̄ . (5)

The Pauli matrices τa act in the 2 × 2 Nambu-Gor’kov
space and 11σ (11τ ) is the identity matrix in real-spin
(Nambu-Gor’kov) space, Γ = (Γ1,Γ2,Γ3) ≡ (τ3 ⊗
σ1, 11τ ⊗ σ2, τ3 ⊗ σ3) and ∆ is a 2 × 2 matrix whose
diagonal (off-diagonal) elements are related to the triplet
(singlet) order parameter [see Eq. (S5) in Ref. 18].

At low energies, fluctuations of the amplitude of the
order parameter ∆0(r, τ) do not play any role while
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phase fluctuations give rise to the Bogoliubov-Anderson
mode [17]. To this end, we write ∆0(r, τ) = ∆eiθ(r,τ),
with ∆ real. The amplitude ∆ is fixed by the saddle-point
equation δS/δ∆ = 0, which yields the BCS equation [6]
[see Eq. (S4) in Ref. 18].

The role of the phase field θ(r, τ) can be made explicit
in the action S by performing the following gauge trans-
formation ϕ̂i(r, τ) = ψ̂i(r, τ)eiθ(r,τ)/2 to new fermionic
fields ϕ̂i(r, τ). Writing the action S in terms of the new
fermionic fields generates new self-energies in the round
brackets in the second line of Eq. (4): −G−1

0 + Σ0 →
−G−1

0 + Σ, where Σ = Σ1 + Σ2 + Σ3 with

Σ1(r, τ) =

[
i
(1

2
∂τθ + φ

)
+

(∇rθ)
2

8m

]
τ3 ⊗ 11σ

− i

2m

[
∇2

rθ

2
+ (∇rθ) ·∇r

]
11τ ⊗ 11σ , (6)

Σ2(r, τ) = M ·Γ and Σ3(r, τ) =
α

2
[Γ× (∇rθ)]·ẑ . (7)

The fermionic part of the action can be integrated out
(since it corresponds to a Gaussian functional integral
for the partition function) leaving us with the following
effective action

Seff =

∫ β

0

dτ

∫
d2r

[ ∆2

g
+
φ2 +M ·M

V

]
− 1

2
Tr
[
ln
(
−G−1

0 + Σ
)]

, (8)

where the symbol “Tr” means a trace over all degrees of
freedom (including space and imaginary time).

To make further progress we need to expand the last
term in Seff in powers of Σ. We keep terms up to second
order in the Fourier components of the fields φq, θq and
Mq. A remarkable simplification occurs in the q → 0
limit where the action reduces to the sum of independent
quadratic terms (see Sect. II in Ref. 18). Density and su-
percurrent oscillations on one hand and spin oscillations
on the other hand decouple. As usual, the frequencies
of collective modes are determined by the isolated poles
of appropriate susceptibilities. For short range interac-
tions, the density/current modes disperse linearly in q
and their frequency vanishes at q = 0 as expected for a
regular Goldstone mode. The spin modes, on the other
hand, have a finite frequency, which increases with in-
creasing ∆ [consistent with the fact that the resistance of
Cooper pairs to the twisting motion described in Fig. 1a)
increases with increasing ∆], but remains less than 2∆,
ensuring long lifetime.

Collective spin oscillations. — In the q → 0 limit
all the mixed response functions vanish (see Sect. II in
Ref. 18) and the frequency of the collective spin mode ω‖
(ω⊥) at q = 0 is given by the solution of the equation

2V −1 − χ‖(⊥)(0, ω) = 0 (9)
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FIG. 2: (color online) Panel a) - c) The in-plane dynami-
cal spin susceptibility χ‖(0, ω) [in units of the 2D density-
of-states m/(2π)] as a function of ω (in units of µ) for in-
creasing values of ∆ (in units of µ) and V = 0. The solid
line represents <e χ‖(0, ω), while the dashed line represents
=m χ‖(0, ω). Note that for finite ∆, <e χ‖(0, ω) diverges at
ω = ω1 and that =m χ‖(0, ω) = 0 for 0 < ω < ω1. Panel d)
The quantity E+(k)+E−(k) as a function of k (in units of k0).
In this figure we have fixed α = 0.2µ/k0 with k0 =

√
2mµ.

with respect to ω. In passing, we note that Eq. (9) can
also be obtained diagrammatically from a vertex equation
obtained by summing up ladder diagrams (see Sect. III in
Ref. 18). In Eq. (9), χ‖ = χσ1σ1 = χσ2σ2 and χ⊥ = χσ3σ3

are the in-plane and out-of-plane dynamical spin suscep-
tibilities of the GRSC described by Ĥ0 + Ĥp, respec-
tively. These are obtained from the analytical continua-
tion, iνm → ω+ i0+, of the corresponding expressions in
imaginary frequency:

χσaσb(0, iνm) = − 1

2βA

∑
k,n

Tr
[
ΓaG0(k, iεn + iνm/2)

× ΓbG0(k, iεn − iνm/2)
]
, (10)

where “Tr” implies a trace over spin and Nambu-Gor’kov
indices and νm (εn) is a bosonic (fermionic) Matsubara
frequency. After analytic continuation we find, at T = 0,

χ‖(0, ω) = − 1

8π

∫ ∞
0

kdk

(
1− ξ+ξ− + ∆2

E+E−

)
×
(

1

ω + i0+ − E −
1

ω + i0+ + E

)
(11)

and χ⊥(0, ω) = 2χ‖(0, ω) [E ≡ E+(k) + E−(k) and
E2
λ(k) ≡ ξ2

λ(k)+∆2]. Due to the relation between out-of-
plane and in-plane spin response functions, we will dis-
cuss only collective in-plane excitations.

We calculate χ‖(0, ω) numerically from Eq. (11) and
plot its real and imaginary parts in Fig. 2. In the limit
∆ = 0 (i.e. absence of superconductivity) – see panel a) –
the imaginary part is non-zero only in the interval of fre-
quencies between 2αkF,+ and 2αkF,− [kF,± being the mi-
nority (majority) Fermi wave vectors for the two Rashba
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FIG. 3: (Color online) Panel a) The ω → 0 limit of χ‖(0, ω)
as a function of αk0/∆. The solid line is the result obtained
from Eq. (11) while the filled circles are the result of Ref. 6.
Panel b) A 2D color plot of the frequency ω‖ of the in-plane
collective spin mode (in units of ∆) as a function of the in-
verse of the strength of electron-electron repulsions (V0/V ,
with V0 = 4π/m) and SOC (αk0/∆). In this plot ∆ = 0.1 µ.
The top contour line is for ω‖ = 2∆ while the bottom con-
tour line defines the boundary of the region in which ω‖ = 0.
The collective spin mode is undamped when it lies within the
superconducting gap (0 < ω‖ < 2∆), i.e. when ω‖ falls in the
region enclosed by the two contour lines. Panels c) and d)
represents 1D cuts of the plot in panel b).

bands ξλ(k)] and the real-part exhibits (logarithmic) sin-
gularities at these boundaries (see Sect. IV in Ref. 18).
When this result is inserted in Eq. (9), one finds a col-
lective spin mode, which is undamped within this ap-
proximation. In a more refined theory (beyond Gaussian
fluctuations), however, low-energy double electron-hole
excitations damp this mode. We now show that, at odds
with the normal phase, in the superconducting state the
mode lies (for a wide range of parameters) within the su-
perconducting gap and thus cannot be damped by these
excitations.

In panels b) - c) we plot χ‖(0, ω) for finite ∆. In
the superconducting state <e χ‖(0, ω) exhibits a diver-
gence at ω1 ≡ mink[E+(k) + E−(k)]. In panel d) we
plot E+(k) + E−(k) as a function of k. In the region
0 < ω < ω1, =m χ‖(0, ω) is identically zero and, since
<e χ‖(0, ω) diverges for ω → ω1, there is always an in-
plane collective spin mode with frequency ω‖ ≈ ω1 for
weak repulsive interactions V . Our results for the fre-
quency of the in-plane collective mode ω‖ as a function of
V and α (for a fixed value of ∆) are summarized in Fig. 3.
Note that there is a wide range of parameters such that
ω‖ lies within the superconducting gap, 0 < ω‖ < 2∆.
We also have checked that, as expected, ω‖ increases with
∆.

In summary, we have shown that quasi-two-
dimensional superconductors with tunable spin-orbit
coupling exhibit undamped collective spin oscillations

that can be excited by the application of a magnetic field
or a supercurrent. The concerted action of spin-orbit
coupling and electron-electron interaction is essential to
the establishment of these collective oscillations. Since
the frequency ω‖ of these oscillations is of the order of
the superconducting gap ∆ we expect that our findings
might enable the realization of long-lived spin oscillators
operating in the frequency range of 10 GHz - 1 THz.
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