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We study the pseudogap Anderson model as a prototype system for critical Kondo destruc-
tion. We obtain finite-temperature (T ) scaling functions near its quantum critical point, using
a continuous-time quantum Monte Carlo method and also considering a dynamical large-N limit.
We are able to determine the behavior of the scaling functions in the typically-difficult-to-access
quantum-relaxational regime (~ω < kBT ), and conclude that the relaxation rates for both the spin
and single-particle excitations are linear in temperature. We discuss the implications of these results
for the quantum critical phenomena in heavy fermion metals.
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Continuous zero temperature phase transitions in
strongly correlated electronic and atomic models have
attracted considerable attention as a new paradigm for
addressing the universal features of correlated quantum
systems [1]. Quantum criticality links two nearby phases
and determines the physical properties in a large range
of temperature and control parameter, the quantum crit-
ical region, that fans out from the quantum critical point
(QCP). This paradigm is especially pertinent to the un-
derstanding of intermetallic rare earth compounds. The
phase diagram of these heavy fermion metals close to the
border of antiferromagnetism features a QCP, but the as-
sociated quantum critical properties are highly unusual
when viewed from the standard description based on
Landau’s notion of order-parameter fluctuations [2]. Es-
pecially, inelastic neutron-scattering measurements have
shown that the dynamical spin susceptibility in the quan-
tum critical regime features a linear-in-T spin relaxation
rate and satisfies a frequency over temperature (ω/T )
scaling [3]. Very recently, Hall-effect measurements have
indicated that the single-particle relaxation rate in the
quantum critical regime is also linear in T [4].

These dynamical scaling and relaxational properties
provide important clues to the nature of the heavy-
fermion QCP. Yet, theoretically, such real-frequency be-
havior is difficult to study. At finite temperatures, two
regimes need to be distinguished: the quantum coher-
ent (~ω > kBT ) and quantum relaxational (~ω < kBT )
regimes [5]. Calculation methods (such as Monte Carlo)
typically work in the imaginary time domain, and the
non-zero Matsubara frequencies (ωn) are necessarily in
the |ωn|/T > 1 regime. Extracting the behavior at real
frequencies requires an analytical continuation, which is
in general a numerically ill-conditioned procedure. The
numerical renormalization group (NRG) operates on the
real frequency axis, but it is not reliable for the quantum
relaxational regime at nonzero temperatures.

In this Letter, we address the dynamical and relax-
ational properties of the particle-hole symmetric pseu-

dogap Anderson model in both frequency regimes. Our
motivations to study this model are multi-fold. In lo-
cal quantum criticality for heavy-fermion metals, the
critical destruction of the Kondo effect [6–9] is local in
space, and the resulting interacting critical modes are
manifested in local correlators which can be studied in
quantum-impurity problems. The pseudogap Anderson
model is the simplest impurity problem that contains the
physics of critical Kondo destruction; it is well known
that varying the Kondo coupling yields a QCP [10–16],
which separates a Kondo-screened Fermi-liquid phase
from a Kondo-destroyed local-moment phase. However,
a proper understanding of the dynamical scaling at fi-
nite temperatures and the associated relaxational be-
havior is not yet available even in this simplest model.
Furthermore, the pseudogap Anderson/Kondo model is
relevant in a number of realistic physical settings. It
has been invoked in the context of non magnetic impu-
rities in cuprate superconductors [17]. It has also been
shown that a judicious tuning of a double quantum-dot
system can produce a pseudogap in the effective den-
sity of states [18]. In disordered metals, a novel phase
has been attributed to the occurrence of local pseudo-
gaps near the Fermi energy at local moment sites [19].
Finally, the pseudogap Kondo model is the appropriate
model to describe point defects in graphene [20].

We study the model using a continuous-time quantum
Monte Carlo approach (CT-QMC) [21]. We determine
the full scaling functions at real frequencies and finite
temperatures for both the dynamical spin susceptibility
and single-electron Green’s function. We achieve this by
taking advantage of insights gained from exact calcula-
tions at real frequencies and finite temperatures in a dy-
namical large-N limit of the model. The results in the
large-N limit motivate us to analyze the imaginary-time
correlators in the physical N = 2 model in a way that un-
covers the form of a boundary conformally-invariant fixed
point. The latter, in turn, can readily be analytically-
continued to real frequency at finite temperatures. We
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establish that both the dynamical spin susceptibility and
single-electron Green’s function display an ω/T -scaling
and contain a linear-in-T relaxation rate. As a by-
product, we show that the CT-QMC approach, which is
based on a high-temperature expansion, can reach low-
enough temperatures with enough accuracy to resolve
quantum critical features.
Pseudogap Kondo model in a dynamical large-N

limit: To set the stage for the CT-QMC study, we start
with the SU(N)×SU(M) Kondo model [22] in the pres-
ence of a pseudogap in the limit of large N and M. In
what follows, we set ~ = kB = 1. The Hamiltonian is

HPKM = (JK/N)
∑

α

S · sα +
∑

p,α,σ

Ep c†pασcpασ. (1)

Here, the spin and channel indices are σ = 1, . . . , N and
α = 1, . . . ,M . The conduction electron density of states
takes the form:

ρ(ω) =
∑

p

δ(Ep − ω) = ρ0|ω/D|rΘ(D − |ω|), (2)

with 2D being the bandwidth. That this limit has a non-
trivial QCP can be seen through the particular form of
the perturbative (in r) RG equation [10]. In the limit
of large N and M, the RG beta function becomes β(j) =
−j(r−j+κj2), with j = JK/D and κ = M/N [23]. This
establishes that the QCP survives the large-N limit and
can be accessed perturbatively. To order r, the large-N
beta function is identical to its N= 2 counterpart [10, 12]
suggesting that the universal critical scaling properties
of the N = 2 QCP are preserved by taking the large-
N limit. In this limit, the local degrees of freedom are
expressed in terms of pseudo-fermions fσ and a bosonic
decoupling field Bα, where Sσ,σ′ = f †

σfσ′ − δσ,σ′Q/N ,
and Q is related to the chosen irreducible representation
of SU(N) [22, 24]. The large-N equations are

ΣB(τ) = −G0(τ)Gf (−τ); Σf (τ) = κG0(τ)GB(τ);

G−1
B (iνn) = 1/JK − ΣB(iνn);

G−1
f (iωn) = iωn − λ− Σf (iωn); (3)

together with a constraint Gf (τ → 0−) = Q/N [22].
Here, λ is a Lagrangian multiplier enforcing the con-
straint and G0 = −〈Tτcσα(τ)c

†
σα(0)〉0 is the non-

interacting Green’s function [13].
Solving the large-N equations in real frequencies for

arbitrary ω and T [23], the full scaling functions in both,
the quantum coherent (ω > T ) and relaxational (T > ω)
regimes are obtained. At the critical coupling Jc(r), we
find that all the correlators display an ω/T -scaling. This
is demonstrated in Fig. 1(a) for the local single-particle
Green’s function [i.e., the T-matrix, G(ω, T ), associated
with G(τ) = Gf (τ)GB(τ)], and in Fig. 1(b) the local
spin susceptibility χ(ω, T ), which corresponds to χ(τ) =
−Gf (τ)Gf (−τ).
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FIG. 1: Scaling functions for the imaginary part of (a) Green’s
function G(ω,T ) and (b) susceptibility χ(ω,T ) for r = 0.3 and
κ = 0.5 at the critical Jc ≈ 1.54 (with T 0

K ≈ 0.3D for r = 0).
Both functions display ω/T -scaling with scaling functions Φ
obeying Φ(ω/T −→ 0) −→ c or 0 for G or χ, where c 6= 0 is a
constant. (c),(d) the scaling functions in imaginary time.

A key insight from the large-N result is that the scaling
functions contain more information beyond ω/T scaling
per se. They have the particular form associated with
a boundary conformally-invariant fixed point, depending
on τ as a power law in πT/ sin(πτT ) [25]. To see this,
we obtain the imaginary-time dependence from the real-
frequency results via

Φ(τ) = −η

∫ ∞

−∞

dω
exp(−τω)

exp(−βω)− η
Im(Φ(ω + i0+)), (4)

for 0 < τ ≤ β. Here, η = ± for bosonic/fermionc Φ.
Fig. 1 shows the (c) Green’s function G(τ, T ) and (d) sus-
ceptibility χ(τ, T ) versus the combination πT/ sin(πτT ).
Both collapse on a single scaling curve in terms of
πT/(sin(πτT )) for all (low-enough) T . A power-law be-
havior for τ → 1/(2T ) is seen over about 7 decades,
and the exponents are compatible with those for the fre-
quency dependence.
Pseudogap Anderson model at N = 2: Guided by

the large-N results, we turn to the scaling functions
for G(τ, T ) and χ(τ, T ) of the particle-hole symmetric
pseudogap Anderson model at N = 2; the low-energy
properties of this model are identical to its pseudogap
Kondo counterpart. To this end, we bring to bear the
recently developed hybridization-expansion Monte Carlo
method [21, 26] on a quantum critical model. This CT-
QMC approach involves a stochastic sampling of a per-
turbation expansion in the host-impurity hybridization
or a weak coupling expansion [21, 26–28]. The results
are free of any finite-size effects [29].
The Anderson impurity model is defined by Ĥ = Ĥ0+
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FIG. 2: Dynamical local susceptibility χ(τ, T ) versus τT for
r = 0.4, Γ0 = 0.1D with U = 0 and U = 0.3D (a). Fi-
nite temperature scaling of the Binder cumulant B(U,T ) as
a function of U at various temperatures (b), error bars are
obtained from a jackknife error analysis. From the inter-
section of the curves we determine the critical point to be
Uc(r = 0.4)/D = 0.085 ± 0.002.

∑

σ Ĥ
(σ)
1 where

Ĥ0 = Ĥc + Ĥloc =
∑

k,σ

ǫkn̂kσ +
∑

σ

(ǫd +
1
2Un̂d,−σ)n̂dσ

Ĥ
(σ)
1 =

∑

k

(

Vdkd
†
σckσ +H. c.

)

(5)

with n̂kσ = c†
kσckσ, n̂dσ = d†σdσ, ǫk being the host

dispersion, Vdk the hybridization, and ǫd the impurity
level energy. We consider the particle-hole symmet-
ric case where ǫd = − 1

2U , with U being the onsite
Coulomb repulsion. The host-impurity coupling is spec-
ified by the imaginary part of the hybridization function
Γ(ω) = π

∑

k
|Vdk|

2δ(ω − ǫk). As in Eq. (2), we choose

Γ(ω) = Γ0

∣

∣

ω
D

∣

∣

r
Θ(D−|ω|). The critical point exists only

for 0 < r < 1
2 [11].

Central to the CT-QMC approach adopted here
is the expansion of the partition function Z =

Tr{T̂τe
−βĤ0

∏

σ exp[−
∫ β

0 dτ Ĥ
(σ)
1 (τ)]} in the hybridiza-

tion term [21].
We measure the single particle Green’s function

Gσ(τ) = 〈Tτdσ(τ)d
†
σ〉, the local spin susceptibility χ(τ) =

〈TτSz(τ)Sz(0)〉 and powers of the local magnetization

〈Mn
z 〉 = 〈

(

1
β

∫ β

0 dτSz(τ)
)n

〉 where Sz(τ) = 1
2 [n̂↑(τ) −

n̂↓(τ)]. The static susceptibility is obtained from χ(ω =

0) = (gµB)
2
∫ β

0 dτ χ(τ). Thermalization can be traced
by 〈nd〉 which obeys 〈nd〉 = 1 in the particle-hole sym-
metric model. We also performed a binning analysis and
obtained the integrated autocorrelation time which in-
creases with decreasing temperature but turned out to
be small (compared to the number of measurements) at
all temperatures. For the lowest temperature considered
(βD = 9, 000) we performed 800, 000 Monte Carlo steps
(MCS) for thermalization, 1, 500MCS between each mea-
surement and 18, 750 measurements. A MCS consists of
an attempt to remove, insert and shift a segment as de-

scribed in reference [21].
By varying U we can tune the model through a QCP.

Correspondingly, Fig. 2(a) shows that the large-β limit
of χ(τ = β/2, β) vanishes for small U (Kondo-screened
phase) and is equal to the Curie constant for large U
(Kondo-destroyed local-moment phase). To accurately
determine Uc(r) we apply finite temperature scaling to

the Binder cumulant, B(U, T ) =
〈M4

z
〉

〈M2
z
〉2 , where 1/T = β

plays the role of the system size. We find swap moves be-
tween up and down spin segments [30] are necessary to
accurately measure the Binder cumulant; for the results
in Fig. 2(b) we performed a swap move every 100 mea-
surements. The nature of the intersection of the data
in Fig. 2(b) implies the phase transition is continuous,
from the location of the intersection we obtain the critical
value of U . For r = 0.4 we obtain Uc/D = 0.085± 0.002.
In the quantum critical regime the static local suscepti-
bility displays an anomalous r-dependent exponent; we
find

χ(T, Uc, r = 0.4) ∼ T−x, (6)

with x = 0.68(3) in good agreement with NRG re-
sults [12].
We now discuss the finite-temperature dynamical scal-

ing properties of G(τ, T ) and χ(τ, T ). Guided by
the large-N results, we plot them as functions of
(πT )/sin(πτT ) in Fig. 3. Excellent scaling collapse is
observed over about two decades, for all temperatures in
the scaling regime. We reach an important conclusion:

χcrit(τ, T ) = Φ
( πτ0T

sin(πτT )

) T≪T 0

K∼
( πτ0T

sin(πτT )

)1−x
, (7)

for τ−1 ≪ T 0
K , Fig. 3(b). Since 0 < 1 − x < 1, the

results for χ(τ, T ) imply that the order parameter sus-
ceptibility shows ω/T -scaling. A similar conclusion ap-
plies to G(τ, T ), as seen in Fig.3(a). Our results yield
G(τ, T → 0) ∼ τ−δ, with the exponent δ = 1 − r, which
is believed to be exact [16]. The fact that 2δ 6= 1 − x
signifies the importance of vertex corrections and in part
reflects the interacting nature of the QCP (see below).
The boundary conformally-invariant form of χ and

G immediately imply that their dependence on real
frequency satisfies ω/T scaling and that their re-
laxation rates, defined in the quantum relaxational
regime, is linear in T . Expressed in terms of ΓM =
i(∂ lnM(ω, T )/∂ω|ω=0)

−1 for a correlator M , the relax-
ation rates Γχ = aT and ΓG = bT , where a and b are uni-
versal dimensionless constants. Such a linear-in-T form
is consistent with what has been observed in quantum
critical heavy fermion compounds, for both the single-
particle Green function [4] and order parameter suscep-
tibility [3]. A linear-in-T relaxation rate signifies that
the QCP is interacting, i.e., containing a nonzero nonlin-
ear coupling among the critical modes. By contrast, at a
Gaussian QCP (whose critical modes do not interact at
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FIG. 3: Scaling of (a) Green’s function G(τ, T ) and (b) sus-
ceptibility χ(τ, T ) at the QCP for r = 0.4, Γ0 = 0.1D and
Uc(r = 0.4) = 0.085D. The Kondo temperature in this
case is T 0

K ≈ 0.029D (for r = 0). For T/D < 5 · 10−3,
we observe collapse of the data over several decades for
more than two decades of the parameter (πT )/sin(πτT ), i.e.,
Gc(τ, T ) = Ψ(πT/sin(πτT )) and χc(τ, T ) = Φ(πT/sin(πτT )).
Ψ(y → 0) ∝ yδ with δ = 0.57(5), and Φ(y → 0) ∝ y1−x with
x = 0.68(3).

the fixed point), the relaxation rate will be super-linear-
in-T because the nonlinear coupling itself vanishes as T
approaches zero [5].

It is instructive to compare our study with previous
theoretical treatments of the finite-temperature scaling
behavior of the pseudogap Anderson/Kondo model. One
study [12] is perturbative in r, which not only becomes
unreliable for finite r but also does not allow the study
of the single-particle Green’s function. Another study
carries out calculations in real frequency at finite tem-
peratures, but relies on the resummation of a perturba-
tion series whose validity for the quantum critical regime
is not clear [15]. Yet another study utilizes a Callan-
Symanzik approach which requires analytic continuation
that is problematic as reflected in the non-commutativity
of the resummation and analytic continuation [16]; it will
be important to check whether that procedure yields a
G

′

(ω, T ) that is compatible in analyticity with G
′′

(ω, T ).
As a more specific illustration of our results, we note that
T rG

′′

(ω/T → 0) is a nonzero constant, which is contrary
to both the perturbative results of Ref. [15] and the re-
sults of the real-frequency Callan-Symanzik resummation
for G

′′

(ω, T ) [16].

The scaling of the local correlators in terms of
πT/ sin(πτT ) suggests that the boundary critical state
and the associated boundary operators may be described
by their counterparts in an effective model with confor-
mal invariance. This is so in spite of the fact that, for
our problem, the pseudogap form of the DOS means that
the bulk fermionic component of the Hamiltonian lacks
conformal invariance. Hence, our results suggest an en-
hanced conformal symmetry that characterizes the QCP.

Summary. We have obtained the full finite-
temperature scaling functions at the local quantum criti-
cal point of the pseudogap Anderson and Kondo mod-
els. Using the results directly obtained in real fre-

quency (ω) in the large-N limit, and by showing that the
imaginary-time local correlators of the physical N = 2
model have the form of a boundary conformally-invariant
fixed point, we succeeded in determining the full scal-
ing function in both the quantum coherent and relax-
ational regimes without using numerically ill-conditioned
analytical-continuation schemes. We demonstrated that
the Kondo-breakdown QCP features a linear-in-T relax-
ation rate for both spin and single-electron dynamics,
which is consistent with the experimental observations
in the quantum-critical heavy fermion metals.
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