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We consider the visco-elastic response of the electronic degrees of freedom in 2D and 3D topological
insulators (TI). Our primary focus is on the 2D Chern insulator which exhibits a bulk dissipationless
viscosity analogous to the quantum Hall viscosity predicted in integer and fractional quantum Hall
states. We show that the dissipationless viscosity is the response of a TI to torsional deformations
of the underlying lattice geometry. The visco-elastic response also indicates that crystal dislocations
in Chern insulators will carry momentum density. We briefly discuss generalizations to 3D which
imply that time-reversal invariant TI’s will exhibit a quantum Hall viscosity on their surfaces.

A striking feature of a topological insulator (TI) is
its topological response. The paradigmatic example is
the time-reversal breaking integer quantum Hall effect
(IQHE) in 2D which exhibits a Hall conductance that is
an integer multiple of e2/h[1]. More recently it was shown
that there exist related states in 3D which are time-
reversal invariant[2] and exhibit a topological magneto-
electric effect[3] (TME). While the electro-magnetic re-
sponse of topological insulators is the most well-known,
in this Letter we consider the visco-elastic response of the
electronic degrees of freedom in TI’s. Namely, we want
to consider the stress response

〈T ij〉 = Λijk`uk` + ηijk`u̇k` (1)

where T ij is the stress-tensor, Λ, η are the elasticity and
viscosity tensors respectively and uij is the strain tensor.
Here we show there is a dissipationless viscosity response
in the topological Chern insulator[4] (CI) state analogous
to that found in the IQHE and fractional QHE states[5–
10]. While viscosities are normally associated with fric-
tional dissipation, this viscosity, present only when time-
reversal symmetry is broken, implies a force perpendicu-
lar to the fluid motion similar to the Lorentz force.

In a condensed matter system the electronic stress
response can be calculated by coupling the electronic
Hamiltonian to perturbations of the background lattice
geometry. The topological responses due to geometric
curvature have been studied in Refs. [11, 12] in the lan-
guage of quantum field theory anomalies. Alternatively,
we consider the response of topological insulators to an
external torsion field. A heuristic understanding of the
difference between curvature and torsion is that when an
object traverses a small loop in real space it is rotated if
there is non-zero curvature, and translated if there is non-
zero torsion. A familiar manifestation of torsion is a crys-
tal dislocation. These line-defects are singular sources of
torsion, analogous to a localized magnetic flux line. For
example, while dragging an electron around a magnetic
flux line its wavefunction is multiplied by a U(1) phase,
while for a dislocation line it is multiplied by a transla-
tion operator along the Burgers vector. The visco-elastic
response is derived as a linear response to torsional per-
turbations of the underlying material geometry. We find

that this response also leads to momentum density local-
ized on crystal dislocations and mention the visco-elastic
response of 3D time-reversal invariant topological insula-
tors (3DTI).

To understand the torsion response we will often draw
comparisons to the well-known electromagnetic responses
of topological insulators which we briefly review now.
The responses of the CI and 3DTI to external electro-
magnetic fields are encapsulated in topological effective
actions i.e. free-energy functionals derived from calculat-
ing a partition function in the presence of external fields.
The QHE and TME are encoded in the effective actions

S
(QHE)
eff [Aµ] =

ne2

2h

∫
d3xεµνρAµ∂νAρ (2)

S
(TME)
eff [Aµ] =

e2

4h

∫
d4x θ εµνστ∂µAν∂σAτ (3)

respectively which are derived from the responses of the
topological insulators to an external field Aµ, and in 3D
an inhomogeneous scalar ‘axion’ field θ (note that n is
an integer). The nominal current response is 〈jµ〉 =
δSeff/δAµ which gives the QHE and TME when acting
on Eq. (2) and (3) respectively. All known topological
electro-magnetic responses in various dimensions can be
described by similar topological effective actions[3].

Our primary interest is the 2D CI for which we will use
a continuum massive Dirac Hamiltonian as a model. To
calculate the visco-elastic response we couple the mas-
sive Dirac Hamiltonian to geometric perturbations. Be-
cause of its spinor nature, the Dirac Hamiltonian does
not couple to geometry through the metric tensor, but
instead via the orthonormal triad ea and its inverse ea
(frame field) and the spin connection ωab. The latin in-
dex a labels the particular vector of the frame which,
when expanded in terms of a local coordinate basis
∂/∂xµ = (∂t, ∂x, ∂y), has components eµa . In a lattice ver-
sion of the theory, the frame is defined by the local orbital
orientation. The stress response can be thought of as a
functional of ea and ωab, but we should not take them to
be related to each other as they would be in Riemannian
geometry[13]. In particular, we will find that the dissipa-
tionless viscosity response of the Dirac model is related
to torsion. In the context of condensed matter phsyics, it
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is convenient, in fact, to set the spin connection to zero
such that the torsion is contained in the properties of the
triad alone.

The action and Hamiltonian for continuum 2D massive
Dirac fermions coupled to a frame field are

S =

∫
d3xdet(e)ψ†γ0 (pµe

µ
aγ

a −m)ψ

H = pxe
x
aΓa + pye

y
aΓa +mΓ0 (4)

with a = 0, 1, 2, γa = (σz, iσy,−iσx) and Γa =
(σz, σx, σy). If the frame field is position independent
the energy spectrum is simply E± = ±

√
p21 + p22 +m2

with pa = eiapi. This is a gapped insulator when m 6= 0.
Now we will calculate the off-diagonal response of the
stress-energy current (analogous to σxy) due to a pertur-
bation of the triad eaµ(x) = δaµ+δeaµ(x) around the trivial
background. We will see later that the triad has a sim-
ple interpretation in terms of elasticity theory and pro-
vides a natural geometric deformation. The stress-energy
current that couples to the triad is Tµa = 1

det(e)
δS
δeaµ

=

ψ̄pµγaψ. We wish to integrate out the massive fermions
to get an effective action which is a functional of the
triad. We are only interested in the terms which lead to
dissipationless transport and we find, at leading order,

〈Tµa T νb 〉(q) =
1

16π
ηabε

µνσqσIT (m) (5)

IT (m) =

∫ ∞
0

dy y
∂

∂y

m

(y +m2)1/2
(6)

where ηab = diag[1,−1,−1] is the flat-space Lorentz met-
ric, q is the external momentum, and y = ~p2 where p is an
internal loop momentum. If we Fourier transform back
to real-space this kernel leads to an effective action

Seff [eaµ] =
1

32π
IT (m)

∫
d3x εµνρeaµ∂νe

b
ρηab. (7)

which is similar to Eq. (2), i.e., a Chern-Simons (CS)
term for the triad. Restoring the spin connection, the
integral in Eq.(7) is the Lorentz invariant integral

∫
ea ∧

T bηab, with T a the torsion 2-form. For reasons we will
see below, we call this a quantum Hall viscosity response.

When probed by an electric field the 2D continuum
Dirac model is notorious for having a half-integer QHE
(σxy = sgn(m)e2/2h) which is connected to the parity
anomaly[14]. However, when properly regularized, (e.g.
on a lattice) σxy becomes quantized in integer units, as it
must for a non-interacting system[4]. In the present case,
in the continuum limit, the coefficient IT (m) is divergent.
If we simply cut off the momentum integral at a UV scale
Λ then we find IT (m,Λ) = −mΛ + 2m2sgn m+O(1/Λ).
Comparing to the quantized Hall conductance, this is
quite different, although from symmetry and dimensional
analysis there is no choice: this term must break time-
reversal and thus is an odd function of m. Additionally
since eaµ is dimensionless (unlike Aµ) this coefficient must

have units of 1/[Length]2. Hence the leading term is pro-
portional to m and the only other scale Λ. The other
unusual thing is that this term is continuous at m = 0,
unlike the Hall-conductance, which jumps. To get physi-
cally sensible answers for the Hall viscosity, and the Hall
conductance, which cannot be half-integer, we must more
carefully regulate the theory. Here, we describe the stan-
dard Pauli-Villars technique with a set of N massive reg-
ulator fields, which is appropriate since it preserves all
the symmetries of the Hamiltonian. The i-th regulator
field has mass Mi and wave-function renormalization Ci
and we take M0 = m, C0 = 1. The regulated Hall con-
ductance and viscosity are

σxy =
e2

2h

N∑
i=0

Ci sgn Mi, ζreg =
1

16π

N∑
i=0

CiIT (Mi)

(8)
respectively. We can rewrite

IT (M) = − M√
π

∫ ∞
ε

dt t1/2
∫ ∞
0

dy ye−t(y+M
2) (9)

which yields IT (M) = −2M/
√
πε+2|M |2sgnM+O(

√
ε).

We have three physical constraints that will give proper
renormalization conditions (i) σxy = ne2/h, n ∈ Z (ii)
ζreg is finite and (iii) if σxy = 0 then ζreg = 0. We know
that when the Dirac mass switches sign we go through a
phase transition between a trivial insulator and a topo-
logical insulator. The sign of m that gives the topolog-
ical insulator is regularization dependent, and without
loss of generality we pick m > 0 to be the non-trivial
insulator. This means that for m < 0 we require both
σxy = ζreg = 0, which is the origin of the third condi-
tion. A solution for Mi, Ci under the constraints above
is always possible. In all cases, one finds that in the
non-trivial phase we have

σxy =
e2

h
, ζreg =

~
8π

(
|m|
~vF

)2

≡ ~
8π`2

. (10)

If we had chosen m < 0 to be the topological phase then
the signs of both coefficients would be flipped. Note that
we have restored the units in the viscosity response. The
dimensions of this coefficient are angular momentum den-
sity, which is equivalent to momentum per unit length,
and the units of dynamic viscosity (force/velocity). Com-
paring to the value of the Hall viscosity for the IQHE[5, 6]
ζIQHE = ~

8π`2B
we see a similar structure coming from the

length scale endowed by the time-reversal breaking field.
Also, the viscosity is continuous in the limit m→ 0 anal-
ogous to the B → 0 (`B →∞) limit of the IQHE.

To make contact with the literature on the IQH vis-
cosity we will re-derive the Hall viscosity for the CI state
using an adiabatic transport calculation. This can be
carried out by putting the Dirac equation on a torus and
calculating the adiabatic curvature due to shear deforma-
tions (equivalently deformations of the modular parame-
ter τ) of the torus[5]. Consider a square torus, made in R2
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by identifications (x, y) ∼ (x+a, y+b) with a, b ∈ Z, with
fixed unit volume, and consider area preserving diffeo-
morphisms, corresponding to spatial metrics of the form

gij =
1

τ2

(
1 τ1
τ1 |τ |2

)
, gij =

(
|τ |2
τ2
− τ1τ2

− τ1τ2
1
τ2

)
(11)

The basis vectors and the spatial part of the triad are

e1 =
√
τ2∂x, e2 =

1
√
τ2

(−τ1∂x + ∂y) (12)

e1 =
1
√
τ2

(dx− τ1dy), e2 =
√
τ2dy (13)

respectively, and the Hamiltonian is

H =

(
m P
P̄ −m

)
(14)

where P = 1√
τ2

(τ̄ p1 − p2) . We define PP̄ ≡ ||P||2.
We consider the ground state in which all of the neg-

ative energy states ψ−(p1, p2; τ) are occupied. The adia-
batic connection can be calculated from the explicit form
of the single-particle wavefunctions and we find

A = i
∑
m,n∈Z

ψ†−(m,n; τ)dψ−(m,n; τ)

= −i
∑
m,n∈Z

f(||P||2)
1

2
d ln

(
P
P̄

)
(15)

where

f(||P||2) =
m

(m2 + ||P||2)1/2
(16)

and where the sums are over the discrete quantized mo-
menta on the torus. This gives the adiabatic curvature

F = i
dτ ∧ dτ̄

2τ2

∑
m,n

p21f
′(||P||2). (17)

If we convert the sum into an integral we find

F = i
dτ ∧ dτ̄
τ22

IT (m)

16π
(18)

which yields the same (unregulated) viscosity as above.
We will now give a physical interpretation in terms

of conventional elasticity fields[15]. Assuming we have
an elastic medium, we can pick a reference un-displaced
state and define a (spacetime) displacement field ua(x).
Then the triad can be written as eaµ = δaµ + waµ where
waµ = ∂ua/∂xµ is the distortion tensor [15]. To simplify
we assume that u0 ≡ 0 i.e. ea = dt. Now waµ contains the

velocity field wA0 = vA and the spatial distortion tensor
wAi where A = 1, 2 and i = x, y. This formulation of the
triad in terms of the distortion tensor is consistent with
the usual definition as can be seen by calculating the spa-
tial metric gij = eAi e

B
j δAB = δij +wij +wji +wAi w

B
j δAB

x
y

Tx
2

x
y

(a)

(b)

Tt
2

FIG. 1. (a) Chern insulator deformed by a dislocation -
antidislocation pair, separated in the y-direction. For each
dislocation, the momentum-density is in the direction of the
Burgers vector. (b) Chern insulator on a cylinder with a
(non-uniform) dislocation threading the cylinder. Local dis-
placements are shown by red arrows. This gives rise to a
momentum-current response along the cylinder which carries
a momentum component parallel to the Burgers vector of the
threaded dislocation, i.e., parallel to the red arrows.

which matches the metric from elasticity theory[15]. The
stress-energy response from Eq. (7) is

〈Tµa 〉 = ζregηabε
µνρ∂νe

b
ρ. (19)

Since e0µ does not enter, this simplifies to a momentum-

density 〈T 0
A〉 = ζregηABε

ij∂ie
B
j and a momentum-current

〈T iA〉 = ζregηABε
iνρ∂νe

B
ρ . These satisfy the continuity

equations ∂t〈T 0
A〉 = −∂i〈T iA〉. Restricting ourselves to lin-

ear elasticity theory we can freely switch between frame
(a) and local coordinate (µ) indices in the response equa-
tions. Thus 〈Tµa 〉 = 〈Tµν 〉 + O((δe)2). Also, spacetime
indices are raised/lowered using the unperturbed metric.

For 〈T 0
a 〉 6= 0, uA cannot be single-valued: it is a dislo-

cation with Burgers vector bA at x0, for which εij∂iw
A
j =

εij∂ie
A
j = −bAδ(2)(x−x0). Thus, the momentum-density

response simplifies to 〈T0j〉 = −ζreg
∑
m b

(m)
j δ(2)(x−xm)

where the xm are the locations of dislocations and b
(m)
j

is the Burgers vector of the m-th dislocation. For a lat-
tice system, the dislocation is the fundamental quantized
unit of torsion since transporting an electron around a
defect translates the wavefunction by a multiple of a lat-
tice constant. An edge dislocation with |b| = a (where
a is the lattice constant) contains a momentum density
of ~

8π`
a
` along the direction of b. To think about smooth

torsion deformations we need to take the continuum limit
and deformations are a continuous distribution of dislo-
cations. As illustrated in Fig. 1(a), this response is a
momentum density bound to a torsion ‘flux’ analogous
to charge density bound to an electromagnetic flux in the
bulk of a CI. Note that Fig.1 is heuristic, since a realistic
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edge dislocation is not simply a cut into the material.
The physical interpretation of the momentum current

response 〈Tij〉 is not as simple because it is more diffi-
cult to picture a torsion electric field. In the 2D plane, a
moving dislocation (torsion flux) will generate a torsion
electric field via the analog Faraday effect. Since we have
seen that dislocations naturally carry a momentum den-
sity, moving it will generate a momentum-current density
as per the response equation. In fact, the momentum-
current due to the moving dislocation is being carried
perpendicular to the induced torsion electric field.

Another realization of the momentum current response
is obtained by using another instance of the Faraday ef-
fect: roll the CI into a cylinder and then insert a torsion
flux into the cylindrical hole. This can be thought of
as threading a dislocation into the hole of the cylinder
so that any particles traveling around the hole will be
translated by the Burgers vector ba of the threaded dis-
location. Changing ba as a function of time creates a
torsion electric field the same way that a changing mag-
netic flux causes a circulating electric field. There is one
key difference with the electromagnetic case: in order to
preserve area the threaded torsion flux cannot be uni-
form and the translation must average to zero over the
length of the cylinder as illustrated in Fig. 1(b). Thus,
the natural experiment is a torque experiment where a
cylinder of CI is twisted. This is equivalent to threading
a dislocation with a position dependent Burgers vector.

The formalism developed here is a natural generaliza-
tion of classical elasticity theory. If waµ = 0 on the bound-
ary, we can rewrite the effective Lagrangian (Eq. (7)) as

Leff =
ζreg

2
εµνρηabw

a
µ∂νw

b
ρ

=
ζreg

2
εµνρησλ (uµσ∂νuρλ +Mµσ∂νMρλ + 2Mµσ∂νuρλ)

uµν =
1

2

(
∂uµ
∂xν

+
∂uν
∂xµ

)
, Mµν =

1

2

(
∂uµ
∂xν

− ∂uν
∂xµ

)
within linear elasticity theory; uµν and Mµν are the
strain and rotation tensors respectively. The first term
is the torsional viscosity which is the Lorentz invariant
version of the QH viscosity[5]. The stress-energy ten-
sor response 〈Tµν〉 is not necessarily symmetric and thus
does not fit in classical elasticity (independent of Mµν).
It is natural to interpret the stress-response within mi-
cropolar (Cosserat) elasticity theory which takes the lo-
cal rotational degrees of freedom of the medium into
account[16, 17]. The distinction here is clear since Dirac
fermions couple directly to the triad and not the metric,
and the spinor nature of the Dirac equation gives local
rotational degrees of freedom to which the triad couples.

Finally, we briefly mention two interesting 3D general-
izations, the details of which will be presented elsewhere.
The first is an anisotropic extension to 3D with the form

Seff [eaµ] =
ζµ
2

∫
d4xεµνρσeaν∂ρe

b
σηab (20)

where ζµ is a vector of viscosity coefficients which is anal-
ogous to the 3D IQHE[18]. IQHE or QAHE states which
are ‘stacked’ along a direction perpendicular to the vec-
tor ζµ exhibit the viscosity response in Eq. (20). This
action is basically equivalent to the 3D viscosity response
of Ref. [9]. For a 3D strong TI we find

Seff [eaµ] =
1

2

∫
d4x ζ(3)εµνρσ∂µe

a
ν∂ρe

b
σηab. (21)

which is a total derivative unless ζ(3) is not a constant.
Hence, on the surface of a 3DTI (where ζ(3) has a domain-
wall) there will be a dissipationless visco-elastic response.
This is expected since the surface also contains a QHE. In
gravity theories with torsion the isotropic term is known
as the Nieh-Yan term[19] and the anisotropic term is the
(anisotropic) extension of the triad CS term.

We leave open the question on how to experimentally
measure this response in 2DEGs or TIs. First, unlike
electric charge, momentum is not conserved when trans-
lation symmetry is broken, as it is in any realistic ma-
terial. Additionally, our result seems to be generically
non-quantized and somewhat regularization dependent.
The reason these issues do not appear in the quan-
tum Hall calculations is because the kinetic energy is
quenched and each single-particle state contributes the
same amount to the viscosity. We strongly believe this
would be modified if one considers a lattice with a uni-
form magnetic field (Hofstadter problem) instead of a
continuum Hamiltonian. Because the Hall viscosity is a
mix of a geometric response with some topological fla-
vor, it will have some non-universal features in any re-
alistic system. With translation and rotation symmetry
the viscosity was shown to be quantized[9], but the only
physical response that has been linked to viscosity, and is
insensitive to translational invariance is the edge-dipole
moment[8] However, the latter result only applies to un-
reconstructed edges and is sure to be modified with real
edge theories. The connection between the quantitative
value of the viscosity and real experiments, as well as
the bulk-edge correspondence for generic edge theories is
not well-understood and remains an open question that
needs to be carefully considered.
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