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We introduce a new concept for the manipulation of fluid flow around three-dimensional bodies.
Inspired by transformation optics, the concept is based on a mathematical idea of coordinate trans-
formations, and physically implemented with anisotropic porous media permeable to the flow of
fluids. In two different situations — for an impermeable object situated either in a free-flowing fluid
or in a fluid-filled porous medium — we show that the object can be coated with a properly chosen
inhomogeneous, anisotropic permeable medium, such as to preserve the streamlines of flow and the
pressure distribution that would have existed in the absence of the object. The proposed fluid flow
cloak completely eliminates any disturbance of the flow by the object, including the downstream
wake. Consequently, the structure helps prevent the onset of turbulence by keeping the flow laminar
even above the typical critical Reynolds number for the object of the same shape and size. The
cloak also cancels the viscous drag force. This concept paves the way to energy-efficient, wake-free
propulsion systems, which control and prevent wake formation through a smart spatial distribution
of propulsion forces.
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Coordinate transformations, specifically, conformal
maps, are widely used in fluid dynamics as a method of
solving the biharmonic equation describing incompress-
ible Stokes flow of viscous fluids [1], in domains with com-
plicated boundary shapes. They are also applied [2] to
solving the Laplace equation describing fluid pressure dis-
tributions in porous media (Darcy’s law), and the Poisson
equation of electrostatics. As a subset of the separation
of variables method, conformal transformations thus offer
a unique and powerful approach to the forward problems
of incompressible flow, as well as electro- and magneto-
statics.

The utility of more general coordinate transformations
in the inverse electromagnetic [3–5] and acoustic [6–9]
problems has been demonstrated recently, most impres-
sively by showing the possibility of electromagnetic in-
visibility, dubbed cloaking [3, 4, 10–12]. The key idea
that enabled the progress in those areas was the com-
bination of coordinate transformations with coordinate-
dependent, and often extremely exotic [5, 13–15], mate-
rial properties. Transformation optics [3–5, 11, 16] and
transformation acoustics [6–8] offer solutions to some in-
verse scattering problems [17] by reducing them to an
elementary one – for example, scattering off a point ob-
ject in free space.

There is no reason why this conceptual approach can-
not be used in other areas of physics [18], and, in fact, it
has already been applied to conductive heat transfer [19],
linear elastodynamics [5, 8, 20–24], surface wave [25] and
quantum-mechanical matter wave [26] dynamics. The
fundamental requirement for the applicability of this con-
cept is the presence of a medium with sufficiently flexible
properties, which enables manipulation of the coefficients
in the equations describing the dynamical process. Here,
we propose porous media as a substrate for transforma-
tion fluid dynamics, and investigate the feasibility of con-

trolling certain features of incompressible fluid flow.
The electromagnetic cloak of invisibility, which in-

spired this approach, manipulates the field lines of elec-
tric and magnetic fields, and the streamlines of momen-
tum flux, in such a manner that these lines are virtually
indistinguishable from those in the absence of any ob-
ject [3]. Because the streamlines are unperturbed in the
free space outside the cloak, electromagnetic radiation
avoids scattering off the structure and therefore exerts
no electromagnetic pressure on it. Achieving a similar
level of control over the streamlines of the fluid flow out-
side the structure would imply canceling the viscous drag
exerted on the structure. In this paper, we demonstrate
the possibility of fluid flow cloaking using porous media
whose properties are more general than those considered
in earlier studies [27, 28].

To allow a simple analytical treatment, we consider
a solid spherical object of radius a impermeable to the
fluid, surrounded by a concentric permeable porous shell
of exterior radius b, immersed in a fluid occupying an
unbounded region (which we refer to as free space), and
subject to a stationary, uniform flow with asymptotic
velocity u0 in the z-direction (Fig. 1(a)). For further
simplification, consider the flow with a small Reynolds
number, Re = ρ0u0b/µ0 � 1, where ρ0 and µ0 are the
density and the dynamic viscosity of the fluid. In this
regime, the nonlinear inertial term (~u · ~∇)~u in the Navier-
Stokes equations can be neglected, and the stationary
incompressible flow is described by the Stokes equation:

µ0∇2~u = ~∇p. (1)

The fluid velocity field ~u is divergence-free,

~∇ · ~u = 0. (2)

In the porous domain, the flow is described by the
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FIG. 1. (a) Schematic of the proposed fluid flow cloaking
structure, and the definition of Problems A and B. (b) Solu-
tion to Problem A: pressure distribution (color) and stream-
lines of flow, calculated using the Brinkman-Stokes equation
with κ0/b

2 = 10−3 in Region I. The solution is virtually in-
distinguishable from the one obtained with Darcy’s law (not
shown).

Brinkman-Stokes equation [2]:

µ∇2~u = ~∇p+ µ0κ
−1~u, (3)

where µ is the effective viscosity of the flow in the porous
medium, and κ is called the permeability.

In general, for an anisotropic porous medium, κ−1 is a
rank-two tensor [2], and µ is a tensor of rank four. While
the implementation of anisotropic permeability using lay-
ered media is well-known (see §5.8.3, “A Layered Medium
as an Equivalent Anisotropic Medium” in Ref. [2]), effec-
tive viscosity of fluids in porous media has been a subject
of some debate [28]. To evaluate the degree of control
that can be achieved by manipulating only permeabil-
ity, in this study we assume that the effective viscos-
ity in the porous medium (µ) is isotropic, constant, and
equal to the fluid viscosity in the absence of a porous
medium (µ0); this assumption is consistent with estab-
lished practice [28]. Whenever a numerical calculation
occurs, we assume for concreteness that ρ0 = 103 kg/m3

and µ0 = 10−3 Pa·s, which approximates water at room
temperature. Additionally, it is assumed that the radius
of the structure b = 1 mm.

In the limit of small permeability, κ � b2, the term
µ∇2~u in Eq. (3) can be neglected in comparison with the
term µ0κ

−1~u, and the Brinkman-Stokes equation reduces
to Darcy’s law [2],

~∇p = −µ0κ
−1~u, (4)

which, combined with the continuity equation for an
incompressible fluid (2), gives Darcy’s pressure equa-
tion [2]:

−~∇κ~∇p = 0. (5)

If we allow the porous medium to fill the entire space
around the solid sphere, Darcy’s equation (5) is at least

approximately valid in all regions of the flow. We then
formulate Problem A as follows: assuming that the
porous medium in Region I (r > b) is uniform and
isotropic with permeability κ0 = const, and that the per-
meability tensor κ is uniaxially-anisotropic and radially-
symmetric in Region II (a < r < b), i.e.

κ = κr(r)r̂r̂ + κt(r)θ̂θ̂ + κt(r)φ̂φ̂, (6)

find the functions κr(r) and κt(r) such that a solution
exists in which the velocity is constant everywhere in
Region I:

~u(r, θ) = u0ẑ = u0(r̂ cos θ − θ̂ sin θ). (7)

Note that because Region I contains a porous medium,
there is a pressure gradient in the z-direction even for
a uniform (“plug”) flow (7), in which the viscous fluid
stress is absent.

The formulation of the more practically important
Problem B is the same as that of Problem A, except
that Region I (r > b) contains no porous medium. In
both Problems, we require the standard, no-slip bound-
ary condition, that is, ~u = 0 at r = a, which corresponds
to a surface of an impermeable solid (Region III).

Because Problem A in Darcy’s approximation is math-
ematically equivalent to the problem of cloaking a spher-
ical object from a uniform electrostatic field (except for
the boundary condition), we could simply use the solu-
tion obtained in Ref. [3],

κr(r) = κ0
b

b− a

(
r − a
r

)2

, κt(r) = κ0
b

b− a
, (8)

which corresponds to the following transformation:

r′ = b(r − a)/(b− a), θ′ = θ, φ′ = φ. (9)

While the boundary condition on the surface of the
cloaked object (r = a) used in electrostatics is different
from the no-slip boundary condition for the fluid flow, in
three dimensions a spherical cloak described by Eq. (8)
remains a perfect cloak regardless of the kind of homoge-
neous boundary condition used at r = a; see Ref. [12] for
a discussion of the boundary conditions in two and three
dimensions.

The pressure distribution and the streamlines of plug
flow around the structure (8) obtained in the approxi-
mation of Darcy’s law are shown in Fig. 1(b), proving
that the distributions (8) represent an exact solution to
Problem A. The plotted solution was calculated through
the axisymmetric formulation of the Brinkman-Stokes
equation available as the porous flow model in the finite
element analysis package COMSOL Multiphysics [29].
Anisotropic permeability in the Brinkman model was im-
plemented by customizing the stress tensor prescribed by
the standard model. When the permeability κ0 is small
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enough, the viscous contribution to the fluid stress is neg-
ligible compared to the Darcy’s force, and the solution of
Brinkman-Stokes equation is indistinguishable from the
solution of the Darcy’s equation.

Now, we turn to the more interesting Problem B where
the unbounded Region I is free of porous medium (see
Fig. 1(a)), and the flow is described by the Stokes equa-
tion in Region I and the Brinkman-Stokes equation in
Region II. The particular case of a creeping flow around
a uniform, isotropic porous shell has been studied by var-
ious authors using the Stokes stream function [27, 28] and
other methods [30, 31]. Here, we generalize the known so-
lutions [27, 28] of the forward problem to allow the inclu-
sion of inhomogeneous, although still radially-symmetric,
uniaxially anisotropic permeability (6), and use them to
solve the inverse problem (Problem B).

In Region I (absent of any porous medium), the most
general solution to Eq. (3) that satisfies the condition of
plug flow (7) at r →∞ can be written as [28]

ur = u0 cos θ

(
1− A

r3
− B

r

)
,

uθ = −u0 sin θ

(
1 +

A

2r3
− B

2r

)
, (10)

where A and B are some coefficients that depend on the
details of the flow in the porous Region II. In the exact
cloaking solution we are seeking, both A = B = 0; this
means that all components of the viscous stress tensor,
σviscij = µ0(∂iuj + ∂jui), as well as the hydrostatic pres-
sure p (gauged to p = 0 at infinity) vanish everywhere in
Region I, leading to zero fluid stress σij = −pδij + σviscij

and a vanishing drag force. The latter can be calculated
as Fz =

∮
SR
σzjdSj , where SR is a sphere of radius R. It

is easy to see that in the limit R → ∞ only the terms
∼ B/r in Eq. (10) give finite contributions. Thus, the
drag force is proportional to the coefficient B and is en-
tirely independent of A [28]. Therefore, for the purpose
of eliminating only the drag force, but not the laminar
wake (deviation of the flow from uniformity), a weaker
form of the cloaking problem can be postulated that only
requires B = 0 without a constraint on A. This wider
class of “weak cloaking” solutions is not analyzed in this
work.

To find the exact cloaking solution (A = B = 0), we
employ numerical optimization of the Brinkman-Stokes
equation (3) with the unknown anisotropic permeabil-
ity profile using COMSOL [29]. The inertia terms in
both the Brinkman and free-space Navier-Stokes equa-
tions were neglected. The optimization solver discretizes
the unknown one-dimensional functions of the spherical
radius, κ−1r (r) and κ−1t (r), and treats the nodal values of
these functions as the optimization variables to solve for.
The optimization goal minimized by the solver is chosen
as A2 + B2; the fully converged solution has A ≈ B ≈ 0
with a numerical accuracy of better than 10−8. Conse-
quently, the flow pattern everywhere outside the porous

(a) (b) (c)

FIG. 2. Solutions to Problem B: Axial velocity normalized to
velocity at infinity (uz/u0, color) and the streamlines of flow
around and through the porous spherical shell. Left to right:
Re ≤ 0.5, Re = 2.5 and Re = 4.5.

shell satisfies the requirement ~u = const, as seen from
Fig. 2(a).

The distribution of κ components necessary to imple-
ment this flow pattern using a shell with the aspect ratio
b/a = 2 is shown as the thick solid line in Fig. 3. The
function κr(r) is negative in its entire range a < r < b,
and the function κt(r) is only positive for r0 < r < b and
negative for a < r < r0, where r0 ≈ 1.8a. The medium
with a negative permeability is an active medium: it must
use external energy to provide acceleration rather than
deceleration to the fluid permeating through the porous
medium. A physical implementation of such a medium
can be foreseen as a distribution of minute pumps that
help propel the fluid and compensate in a controlled fash-
ion the viscous pressure drop that exists due to the ve-
locity gradient in the a < r < b region. Potential can-
didate technologies for such a directional acceleration on
the micro-scale level are electro-osmotic [32], pneumatic
and piezoelectric [33] micro-pumps.

So far we have been neglecting the nonlinear advective
term in the Brinkman equation, which is only valid for
Reynolds numbers Re � 1. In this regime, the perme-
ability profile is independent of the asymptotic velocity
u0. Using numerical optimization of the full Brinkman
and Navier-Stokes equations,

ρ0(~u · ~∇)~u = −~∇p+ µ0∇2~u− µ0κ
−1~u, (11)

where κ−1 ≡ 0 in Region I, we have also investigated
the possibility of higher-Re flow cloaking. In Eq. (11),
we assume that porosity in Region II, εp, equals unity,
which is consistent with our assumption µ = µ0.

Figures 2(a-c) demonstrate that the flow can be
cloaked for Reynolds numbers up to approximately 4.5;
at larger Re the assumption that the flow in Region I
is given by Eq. (10) is no longer accurate, and the op-
timization goal based on the A and B coefficients loses
its meaning. The drag force Fz, normalized to the ideal
Stokes drag for a sphere of radius a (FSt = 6πµu0a [1]),
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FIG. 3. Solutions to Problem B: radial (top) and azimuthal
(bottom) components of inverse permeability (normalized by
κ0 = a2/4) as functions of the spherical radius r correspond-
ing to solutions of the exact cloaking problem (A = B = 0)
with various Reynolds numbers.

was estimated by direct integration of the fluid stress,
and shown to be ≤ 0.01 at all Re ≤ 1, ≈ 0.157 at
Re = 2.5 (Fig. 2(b)), and ≈ 0.48 at Re = 4.5 (Fig. 2(c)).
The resulting permeability profiles for various Re values
are shown in Fig.3. We observe that these profiles are
virtually independent of the velocity magnitude up to
Re ≈ 2.5, but above that value they evolve quickly with
Re.

In conclusion, we have postulated and solved the prob-
lem of cloaking a spherical object from the fluid flow in a
uniform porous medium (A), and in free space (B), using
a permeable porous shell. The new concept of utilizing
permeable media for fluid flow management opens the
door to novel hydrodynamical approaches to compensat-
ing the viscous drag force, eliminating laminar wake and
inhibiting the formation of turbulent wake past moving
bodies. The emergence of these strategies hints at the
possibility of more fuel-efficient propulsion techniques.
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