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We consider dipolar interactions between heteronuclear molecules in a low-dimensional setup
consisting of two one-dimensional tubes. We demonstrate that attraction between molecules in
different tubes can overcome intratube repulsion and complexes with several molecules in the same
tube are stable. In situ detection schemes of the few-body complexes are proposed. We discuss
extensions to many tubes and layers, and outline the implications on many-body physics.
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Few-body bound states play a crucial role in deter-
mining properties of many physical systems. In QCD
and nuclear physics, quarks bind into nucleons and nu-
cleons into nuclei. In chemistry and biology, chemical
reactions are determined by properties of complexes of
atoms and molecules. In soft condensed matter physics,
self-organization of elementary objects into chains deter-
mines properties of rheological electro- and magnetoflu-
ids [1]. In semiconducting nanostructures, like quantum
wells, dots or nanotubes, few-body states like charged
excitons and biexcitons affect optical properties [2].

A special feature of cold atom ensembles is the possi-
bility to tune the two-particle interaction strength, which
controls the properties of few-particle complexes. While
most of the earlier work focused on Efimov states in sys-
tems with contact interactions [3], recent experimental
progress with polar molecules [4, 5] and Rydberg atoms
[6] open interesting possibilities for studying few-particle
complexes in systems with long-range interactions. These
systems can provide insights into many-body systems
with long range forces in the intriguing but poorly under-
stood regime of intermediate interaction strengths. Mul-
tiparticle bound states require strong enough interactions
to form composite objects, but not too strong to avoid
locking molecules into a Wigner crystal (see e.g. [10]).
Studying dynamics of formation of the mutiparticle com-
posites can help to uderstand open questions of chemical
reactions in reduced dimensions [7].

In this paper we demonstrate the stability of few-body
states of ultracold polar molecules with long-range dipole
interactions in a low-dimensional setup consisting of two
one-dimensional tubes. This geometry can be produced
by optical lattices or atomic chip traps [8]. While dimers
in bilayers of dipolar molecules have been studied before
[9], the main result of our paper is the demonstration of
the stability of few-body bound states with two or more
molecules in the same tube. We focus on the regime
where intratube interactions are repulsive, so that the
binding stems from intertube attraction. We determine
the stability of these complexes as function of the direc-
tion and the strength of the dipoles. We show the sta-

1-31-1

1-2 2-2

z

x

y

d

φ
ϑ

Δ
Tube A Tube B

Detection

(a) (b)

Scattered light

Probe light

FIG. 1: (color online) Setup and various few-body complexes.
(a) Setup. The molecules of dipole moment d move in two
tubes. The probe and scattered light waves are used for the
detection of complexes. (b) Notations for the complexes.

bility of even larger complexes and suggest a detection
scheme to map out their stability regimes.

Model.- We consider dipolar interactions between
molecules confined in tubes A and B with intertube dis-
tance ∆ (Fig. 1). The interaction between two dipoles
aligned by an external electric field is Vd(r) = D2(1 −
3 cos2 ϕrd)/r

3, where D2 = d2/4πε0 and cosϕrd = r ·
d/(rd). r is the relative position of two molecules and
d the dipole moment. For deep 1D lattices with small
transverse confinement length l⊥ � ∆, the intertube,
V1(x), and intratube, V0(x), interactions depend only on
the interparticle distance along the tube direction x.

The intertube interaction is V1(x) = D2[1 −
3 cos2 ϑ(x̃ cosϕ + sinϕ)2/(x̃2 + 1)]/∆3(x̃2 + 1)3/2 The
intratube interaction, V0(x), is modified at small dis-
tances by the transverse part of the wavefunction [11]:
V0(x) = D2(1 − 3 cos2 ϕ cos2 ϑ)λ3f0(λx̃)/∆3, where
f0(u) = −u/2 +

√
2π
(
1 + u2

)
exp(u2/2)Erfc

(
u/
√

2
)
/4,

λ = ∆/l⊥, and x̃ = x/∆. If the direction of the
dipoles satisfies (1 − 3 cos2 ϕ cos2 ϑ) = 0, the intratube
interaction vanishes. This defines the ”magic angle”

ϕM = arccos
(

1√
3 cos(ϑ)

)
. We focus on ϕ ≥ ϕM , which
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excludes intratube attraction. The complexes discussed
here are therefore exclusively bound by intertube attrac-
tion. The competition of interaction to kinetic energy is
determined by U0 = mD2/∆h̄2. Lengths are measured
in units of ∆ and energies in units of h̄2/m∆2.

We consider few-particle complexes of up to four
molecules and denote them via the molecule numbers in
the two tubes, NA-NB : 1-1, 1-2, 1-3, and 2-2 (Fig. 1(b)).
We use a finite difference method to obtain the eigen-
spectrum for the relative motion for given parameters
ϑ, ϕ, λ, U0, NA and NB . To reduce the size of the Hamil-
tonian matrices all symmetries are exploited. The sta-
bility of a complex is checked in two ways. First, we
confirm that the energy of a complex is less than that
of smaller few-body states causing an energy penalty for
dissociation. Second, we compute the average interparti-
cle distances, which should be finite for a bound state.

Dimer.- The simplest complex is the 1-1 dimer. For
ϑ = 0, a dimer always profits from the attractive part
of the intertube interaction and is stable for all ϕ and
U0. However, it can be made unstable by rotating the
dipoles out of the x−y plane (ϑ 6= 0). The stability of the
dimer depends on the integral over the intertube inter-
action

∫
dxV1(x) = 2

(
cos2(ϕ) cos2(ϑ)− cos(2ϑ)

)
D2/∆3

and on the global minimum of the intertube interaction,
V1,min, which is negative for ϑ < arccos(1/

√
3) and posi-

tive otherwise. The directions of the dipoles can be classi-
fied into three regions according to the stability of dimers:
(i) for

∫
dxV1(x) < 0 the dimer is bound for any U0, (ii)

for
∫
dxV1(x) > 0 and V1,min < 0 there is a bound dimer

above some critical strength U0, and (iii) for V1,min ≥ 0
the dimer is unbound. For the dimer it does not matter
whether the molecules are fermions or bosons as long as
tunneling between the layers can be neglected.

Trimer and tetramers.- Complexes with more than two
molecules can be bound if the intertube attraction ex-
ceeds both intratube repulsion as well as the kinetic en-
ergy cost associated with localization. For a given ϕ the
intertube attraction V1 is strongest for ϑ = 0. In or-
der to stabilize larger complexes we will now focus on
ϑ = 0 and tilt the dipoles close to the magic angle [for
ϑ = 0, ϕM = arccos(1/

√
3) ≈ 54.7◦] which strongly

reduces intralayer repulsion. Furthermore, we consider
strong dipole interactions (large U0).

Fig. 2 shows that trimers and tetramer can be sta-
ble both for fermionic and bosonic molecules. Fig. 2(a)
shows the range of tilting angles at which the 1-2 trimer
has lower energy than the dimer (and than free parti-
cles). Shown are results both for fermionic and bosonic
molecules for U0 = 10 with transverse confinement
strengths λ = 5 and 10. We note the following common
features in Fig. 2. (I) Trimer and tetramers have their en-
ergy minimum at the magic angle ϕM , since the intratube
repulsion vanishes. We find that at ϕM the energy be-
comes independent of the confinement, because the in-
tertube interaction does not depend on it and intratube
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FIG. 2: (color online) Stability plots for (a) bosonic (subscript
B) and fermionic (F) trimer 1-2, (b) bosonic and fermionic
tetramer 2-2, (c) fermionic tetramer 1-3, (d) bosonic 1-3. The
complex energies E as functions of the tilting angle ϕ, for var-
ious confinements λ, U0 = 10. The curves for 1-1 and 1-2 (in
b, c, d) are shown for comparison to demonstrate the stability
of larger complexes. A complex is stable below the critical ϕ,
where its energy is smaller than that of a smaller state. At
the magic angle ϕM = 54.7◦, the intratube interaction van-
ishes and the energy does not depend on the confinement λ
(curves for different λ merge at ϕM ). The energy variation
is more pronounced for bosons than for fermions, and bosons
are more sensitive to the confinement.

interaction goes to zero (at ϕM curves for different λ
merge). At ϕM complexes of bosonic molecules have
a much lower energy than that of fermionic molecules,
since bosons can occupy the same state and profit max-
imally from intertube attraction, while this is forbidden
for fermions by the Pauli principle. (II) Close to ϕM
complexes of bosonic molecules have a much stronger de-
pendence on transverse confinement and on the tilting
angle than complexes of fermionic molecules. This is be-
cause bosonic molecules are strongly affected by turning
on the sharp maximum of the intratube interaction at

zero distance V0(0) = λ3 (1−3 cos2 ϕ)D2

∆3

√
π
8 as dipoles are

tiltied away from ϕM . In contrast, fermions are much
less affected due to the Pauli principle. When the in-
tratube repulsion at short interparticle distances exceeds
the intertube attraction, bosons become hard-core and,
generally, behave as fermions in 1D. This explains why
fermionic and bosonic trimers have approximately the
same energy away from ϕM as shown in Fig. 2(a).

Full stability diagram.- Our results on the stability of
all complexes are summarized in Fig. 3. Above the (blue)
dashed line only the dimer is stable, while below it the
trimer is also stable. The (green) dotted line marks the
position, where 1-3 state becomes stable and below the
(red) dashed-dotted line 2-2 state is stable. The diagram
shows that with increasing number of particles in the
complex the stability regime is reduced to a small inter-
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FIG. 3: Full stability diagram. Each region is labeled by
its stable complexes. For large tilting angle, only the dimer
is stable but approaching the magic angle, other complexes
become stable. (a) Fermionic molecules. All states except
the dimer have a critical interaction strength U0. (b) Bosonic
molecules. Close to the magic angle the complexes become
stable for any U0. Here λ = 10.

val starting from ϕM . Furthermore, by comparing the
stability diagram for fermionic and bosonic molecules a
major difference is evident. For fermions, there is a crit-
ical interaction strength even in the absence of intratube
repulsion, while bosons do not to have a critical value.

Model extensions.- Even for larger complexes we could
continue the method developed here. However, already
from our data we can infer the role of such states. For
N = 5, 2-3 and 1-4 configurations are possible. The sta-
bility for larger complexes in the bitube case will shrink
to a small sliver near ϕM . In contrast, the trimers and
tetramers are relevant over a broader range of parame-
ters, making them more accessible in experiments.

In a setup with planes instead of tubes, the cost of
localization increases which makes complexes less stable.
The classically preferred configurations for a bilayer are
the same as for bitubes with ϑ = 0. Trimers or larger
complexes will also be stable in bilayers, however, only
for larger dipole strength. Dimers are always stable in
the bilayer for any tilting angle [9]. In the case of more
than two tubes or layers, more complex few-body states
become possible. In particular, chains of molecules can
form with one molecule per tube/layer [13]. By tilting the
dipoles more than one molecule per layer can be bound
which might lead to bifurcations of these chains.

The few-body results discussed here have impact on
the many-body problem. In the regime where only the
dimer is stable, the fermionic many-body problem shows
a BCS-BEC crossover at low temperatures [12]. How-
ever, we have shown in Fig. 3 that there is an extended
parameter regime where not only dimers but also trimers
are stable, while larger complexes are unstable. The rel-
evance of trimers in the many-body problem can be en-
hanced when the two tubes/layers have different density,
as noted previously [14]. Therefore by increasing the im-
balance the system changes from a collection of interact-
ing bosonic dimers to one of interating fermionic trimers.

Trimers will modify the BCS-BEC crossover and the crys-
tallization expected for large dipole moments [15].
Detection.- Multiparticle composites can be observed

using several experimental techniques. For example the
1D lattice depth can be changed periodically. If the shak-
ing frequency matches the binding energy of a complex it
dissociates thereby heating the system. The temperature
after shaking shows resonances as function of frequency
[16]. Alternatively, RF-spectroscopy can be used [17].
We propose to map out the stability diagram of various
complexes in situ, using optical quantum nondemolition
detection [18, 19]. Relying on coherent interference, it
is sensitive to the intermolecule distances, which unam-
biguously reflect the complex stability.

The probe light is non-resonantly scattered by the
molecules and the intensity of scattered light is detected
in the far-field (Fig. 1). We propose to detect in the di-
rection perpendicular to the tubes, where the interference
condition is independent of the x-position of a molecule.
Note that the chosen detection angle is not the Bragg one
with the largest intensity, but the diffraction minimum,
where the light intensity directly reflects the molecule
number fluctuations and intertube correlations [18].

The diffraction minimum is defined such that two tubes
scatter light with equal amplitudes but phase shift π.
Hence, the light scattered from a tightly bound complex
is zero in this direction. For different molecule numbers
in two tubes, the light amplitudes at the tube positions
have to be chosen differently: the amplitude ratio α is 1
for 1-1 complex, 1/2 for 1-2, and 1/3 for 1-3 state. Then,
the mean photon number at the diffraction minimum is
nΦ = |C|2 〈[NA(W ) − αNB(W )]2〉, where NA,B(W ) are
the molecule numbers in two tubes weighted by the laser
profile of the finite width W , and C is the single-molecule
scattering coefficient [18]. The expectation values enter-
ing nΦ are taken for the few-body ground state.

An important property of our system is that complexes
can be consecutively made stable or unstable by chang-
ing the direction or strength of the dipoles. We demon-
strate that the dissociation of each complex leads to a
sharp jump in the light intensity, as smaller complexes
induce number fluctuations within the laser beam, which
increase the intensity. As an example, the dissociation of
the trimer is shown in Fig. 4. Increasing ϑ from zero, first
the trimer dissociates into a dimer and a free molecule,
and then into three free molecules. At each dissociation
the light intensity jumps to a new plateau with char-
acteristic values 0, n0/2, and 3n0/2 (n0 is the photon
number scattered from a single molecule). The creation
of complexes correspond to light suppression.
Conclusions and outlook.- We have shown that few-

body bound states of two, three, and four dipolar
molecules in a bi-tube setup are stable over a significant
range of dipole strength and direction for both fermionic
and bosonic molecules. The complexes are bound by the
long-range intertube attraction. The existance of com-
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FIG. 4: Optical detection of trimer. (a) Three different
regimes for various angle ranges. (b) Two relative distances
between molecules in different tubes. The consecutive cre-
ation of 1 and 3 free molecules leads to divergence in one and
then in the other distance. (c) State energy. The behavior
is qualitatively different only for the last dissociation. (d)
Number of photons scattered into the diffraction minimum.
Each regime has its own characteristic photon numbers (0,
n0/2, and 3n0/2). The light intensity jumps show the disso-
ciations (or creations) of a dimer and trimer. Here U0 = 10
and ϕ = 57◦, Gaussian laser profile with W = 5∆.

plexes can be confirmed in a non-destructive in-situ op-
tical detection scheme, where the light intensity jumps
precisely at the points where new bound states form.
To observe the few-body states discussed here, U0 is the
important parameter. We estimate that the fermionic
trimer is stable for U0 > 2.5. Such values are hard to
achieve directly in current experiments with 40K87Rb
(dipole moment d < 0.56 Debye). However, it may be
possible to achieve the stability regime of multiparticle
composites with these molecules by applying an optical
lattice along the tubes. Qualitatively this may be un-
derstood as increasing the effective mass, and detailed
analysis requires taking into account the tight binding
dispersion. A molecule of larger dipole moment could
also be used. 6Li133Cs has a maximum dipole moment
of d ≈ 5.3 Debye [4] and U0 can then exceed 100 which
is far within the stability regime of the complexes stud-
ied. For strong dipole interaction the binding energy can
be large and therefore measurements can be performed
even on non-degenerate thermal systems (for 6Li133Cs
and ∆ = 500 nm the binding energy can exceed 500nK
for sufficiently large U0 and close to the critical angle).
The current work proves that trimers can be stable over
extended regions of parameter space. A degenerate Fermi
gas of fermonic dipolar molecules can form a collection of

interacting bosonic dimers or one of interating fermionic
trimers. The formation of trimers will modify the BCS-
BEC crossover as well as the crystallization expected for
large dipole moments. Finally, we point out that ideas
presented here should also be relevant for magnetic atoms
and molecules, such as Cr and Dy. However obtaining
multiparticle bound states with magnetic dipolar interac-
tions, which are much weaker than electric ones, requires
using strong in-tube optical lattice for dramatic suppres-
sion of the intube kinetic energy. After completion of
this work, we became aware of the related work [20] on
trimer liquids of polar molecules in coupled tubes.
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