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A theory for thermomechanical behavior of homogeneous DNA at thermal equilibrium predicts
critical temperatures for denaturation under torque and stretch, phase diagrams for stable B–DNA,
supercoiling, optimally stable torque, and the overstretching transition as force-induced DNA melt-
ing. Agreement with available single molecule manipulation experiments is excellent.
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DNA is a sophisticated nanomechanical object. The
interplay between strong covalent bonds of the backbone
and weak hydrogen interactions between bases [1], the
thermal bath in which it is immersed, and the proximity
of physiological conditions to the denaturation temper-
ature, make DNA highly and non-linearly responsive to
mechanical and thermal changes, and render any solely
mechanical approach incomplete. This is critical for nan-
otechnology, where DNA is the basis for novel materi-
als [2], but understanding double helix thermomechanics
would also illuminate biology, where, e.g., enzymes in-
volved in replication and repair are viewed as molecular
motors.

In the past twenty years, direct single molecule manip-
ulation [3] has revolutionized our understanding of key
aspects of DNA, revealing new couplings and transitions
between different structures, whose nature and forms,
however, are still speculative. When a few micrometer
long strand of DNA is stretched to a tension of the order
of pico-Newtons (pNs) to avoid formation of plectonemes,
sharp transitions are activated at positive and negative
torques, while an overstretching transition is observed for
DNA under tension of ' 60−70 pN at zero torque [3–5].
Tentative tension–torque phase diagrams for the stabil-
ity of B–DNA [4], and various phenomenological theo-
ries, some of which highyl parametrized, have been pro-
posed to explain these effects [5–11]. The robustness of
the Peyrard-Bishop-Dauxois approach (PBD) [12–14] has
been corroborated by Cocco and Barbi [15, 16]: they
incorporated torque and successfully reproduced denat-
uration by unwinding. However, these recent studies
do not include tension, do not explain denaturation at
overwinding, and do not provide phase diagrams in the
tension-torque plane. Also, although much simpler than
the molecular structure they describe, their complexity
cannot offer analytic equations to more easily guide ex-
periments.

We address these issues by modeling the pitch depen-
dence of the base bond and therefore the effect of tension
and torque in a way suitable for elimination of the an-
gular degrees of freedom via integration of the partition
function, and obtain an effective energy for a PBD model
which incorporates temperature and external loads. We
compute the phase diagram for B–DNA and the depen-

dence of supercoiling on torque, tension and tempera-
ture at criticality. Finally, we propose simple algebraic
formulæ for the observables. Although here we neglect
bending modes [17, 18], we will show elsewhere [19] how
to incorporate them into our framework.

In our model i labels nucleotides separated by a dis-
tance a along the DNA backbone (Fig. 1), xi is the length
of the ith base’s bond, ωi = (θi+1−θi−1)/2−Ω is the an-
gular shift between nucleotides along the backbone, and
θi is their angular coordinate. As in the Cocco–Barbi
models [15, 16], the two strands of DNA are assumed
symmetrical, with a fixed rigid center line, and infinitely
long. Ω denotes the natural pitch of the helix, and ωi
describes deviations from equilibrium. The potential en-
ergy of the system is E = a

∑
iEi with

Ei =
k

2

∆xi
2

a2
+
ν

2
(ωi + Ω)

2
+ [χ(xi)− 1]V (ωi) (1)

the sum of: a stacking potential (∆xi = xi+1−xi), in har-
monic approximation for simplicity (see discussion later);
an elastic term which restores the θi+1 = θi angular con-
figuration for open strands; and a square well potential
for the hydrogen bond between bases [χ(x) is a step func-
tion which is 0 for 0 ≤ x ≤ xc and 1 for xc < x, where
xc is a length associated with the hydrogen bond], whose
depth V depends on the angle ωi. Because of a com-
plex combination of hydrophobic, π–π, and dipolar in-
teractions, the bonding of opposite bases is responsible
for DNA’s pitch. Therefore V (ω) is not symmetric but
rather V ′(0) = νΩ, since DNA is in equilibrium at ωi = 0.
Also, µ = −V ′′(0) must be positive: indeed, ν + µ being
the torsional rigidity of the joined double helix and ν of
the (much softer) open strands, we have µ � ν > 0 (we
shall see that µ/ν ∼ 102). We can now expand V as

V (ω) ' V0 + νΩω − 1

2
µω2. (2)

Our choice of a square well potential and separation of
variables xi, ωi in (1) keeps the model analytically solv-
able: no substantial changes in the thermodynamics arise
from surrendering it in favor of, e.g., the Morse poten-
tial [14]. We show elsewhere how to introduce a smooth
potential, desirable for dynamics and other studies [19].

Now consider the external loads. The torque Γ is in-
corporated in (1) via a term -

∑
i τωia (for dimensional



2

a

ho

R

R (θi+i − θi)

(i)

(i + 1)

(i + 1)

(i)

xi

a

Nucleotide

Base

Base

Nucleotide

a b c

FIG. 1: (a) Schematics of our DNA model: i labels nucleotides
separated by a distance a along the DNA backbone, θi is their
angular coordinate, xi is the length of the ith base’s bond. (b)
A closed portion of the double helix. (b) We assume that in
region where base pairs are open, the two backbones twist
with bases pointing outwards.

convenience Γ = τa). Tension is more subtle: the to-
tal stretch

∑
i hi =

∑
i χ(xi)h

o
i +

∑
i [χ(xi)− 1]hci from

both closed (hci ) and open (hoi ) DNA sections can only
arise from winding/unwinding, since the backbone is ef-
fectively inextensible. While elongation due to a change
in pitch for the joined double helix is trivially (hci+h0)2 =
h2

0 − R2(ω2
i + 2ωiΩ) (R is the radius of the DNA helix,

h0 < a the vertical distance between nucleotides), as-
sumptions are necessary to explain the coupling between
stretch and twist when the strands are open. We assume
that the two backbones twist with bases pointing out-
wards as in P-DNA (Fig. 1), and therefore the length of
openings responds to winding: hoi

2 = a2 − r2(ωi + Ω)2,
where r < R is an effective diameter for the backbone.
Below, we will expand these expressions to second or-
der around their stable configurations (ωi = 0 for closed,
ωi = −Ω for open sections). All the quantities Ei, k, ν,
µ, V0, τ , and f have the dimension of a force.

Equilibrium thermodynamics is implemented by inte-
gration of exp−β(E −∑i τωia−

∑
i fhi) over {xi} and

{ωi}. Since everything is quadratic in ωi, we can ex-
press the product of the gaussian integrals in the angular
variables ωi and obtain the partition function

Z = e−βL∆

∫ ∏
i

dxie
−βa

[
k
2

∆xi
2

a2 +Ṽ (xi)

]
(3)

for an equivalent PBD model, whose effective potential

Ṽ (xi) = [χ(xi)− 1]

[
Ṽ0 + Ω̃τ − 1

2

µ̃

(ν̃ + µ̃)ν̃
τ2

]
(4)

incorporates explicitly the effect of the external torque
Γ = aτ , and also of f , through the tension-increased
torsional rigidities µ̃ = µ + mf , ν̃ = ν + nf , and the
pitch under tension Ω̃ = Ω − o

ν̃+µ̃f . Also, the depth of
the effective potential in the absence of external torque,

Ṽ0 = V0 − T
2a ln ν̃+µ̃

ν̃ − 1
2ν Ω2 − vf + ν̃+µ̃

2

(
Ω− Ω̃

)2

, is

weakened by tension f and entropically by temperature T
(as also found via different approach by Manghi et al [10].

The term ∆ = − T
2a ln 2πT

aν̃ − 1
2 ν̃ Ω2 − vf − Ωτ − 1

2ν̃ τ
2

from (3), while irrelevant for the phase diagram, must
be kept when computing supercoiling. L = Na is the
length of the DNA. There are then purely geometrical

parameters: m = R2

ah0
+ R4

ah3
0
ω2

0 − n, n = r2

a2 , o = R2

ah0
Ω,

v = 1− h0

a , where R (' 10 Å) is the radius of the DNA

molecule, h0 (' 3.4 Å) the elevation between consecutive
nucleotides, a (' 7 Å) their distance along the backbone,
and Ω = 2π/10 the pitch of DNA: these are established
geometrical values for B–DNA, but our formalism works,
mutatis mutandis, for A– and Z– forms.

The expression for Z in (3) is exact within our model,
and the resulting PB problem (or PBD if anharmonic-
ity is included) is amenable to numerical transfer matrix
treatment. Here we will proceed analytically. In the
continuum limit, neglecting an irrelevant equipartition
factor, and taking L large, Z in (3) can be written as

Z ∝ e−βL∆ Tr e−LĤ , (5)

proportional to the trace of the operator

Ĥ = − 1

2kβ
∂2
x + βṼ (xi). (6)

Torque, tension and temperature enter the potential (4),
and the critical surface corresponds [12] to the disappear-
ance of the bound state for Ĥ, or

Ω̃τ − 1

2

µ̃

(ν̃ + µ̃)ν̃
τ2 − vf +

o2f2

ν̃ + µ̃
+

+
T 2
D − T 2

εxc
+

1

2a

(
TDl − T l̃

)
= 0, (7)

where ε = 8kxc/π
2 has the dimension of an energy,

l = ln[(ν+µ)/ν] and l̃ = ln[(ν̃+ µ̃)/ν̃] are pure numbers,
and T 2

D = εxc[V0 − TD

2a ln ν+µ
ν − 1

2ν Ω2] is the denatu-
ration temperature in the absence of torque or tension.
There are only a few parameters to fit: a typical value for
the denaturation temperature used in theoretical treat-
ments [15, 16] is TD = 350 K [20]; we show below from
data on torque-winding experiments that µ = 103 pN.
Choosing the remaining three parameters as εxc = 45
pNÅ, ν = 24 pN and n = 0.3, provides a remarkably
good fit for 10 experimental data points (20 numbers) [4]
in the f vs. Γ phase diagram of Fig. 2. The skewness
of the critical lines can be quantified: from (7) one finds
for Γm = (Γ+

c + Γ−c )/2, the middle point between critical
torques at given tension,

Γm = a
µ̃+ ν̃

µ̃
ν̃ Ω̃ ' aν Ω + f

(
nΩ− oν

µ

)
, (8)

independent of temperature. As (8) reveals, skewness
results from backbones twisting under torque: it would
be erroneously negative for r = 0. With our parameters,

Γm/ (pN× nm) = 11 + 92× 10−3 f/ (pN) . (9)
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FIG. 2: Predicted critical lines for denaturation at different
temperatures. The region enclosed by each line corresponds
to stable B–DNA at that temperature. Points are experimen-
tal data from single molecule manipulation [4], square corre-
sponds to the well known overstretching transition (Γ = 0,
f = 60 pN). TD = 350 K = 77 oC, the denaturation tempera-
ture, is critical at zero external load: but even at temperatures
of TD or higher (inset), B–DNA can be stable in an interval of
applied positive torque. Solid (dotted) straight line indicates

Γm = aν̃Ω̃ (its approximation Γm = 11 +0.092f), the middle
point between critical torques, which also corresponds to the
highest critical temperature at given tension.

Equations (8, 9) along with experimental data for DNA
that place melting at f = 15 pN, for Γ+

c = 34 pN×nm,
Γ−c = −10 pN×nm and at f = 60 pN, for Γ+

c = 33
pN×nm [4], predict melting at zero torque and tension
f = 60 pN (blue square in Fig. 2) in good agreement with
the observed overstretching transition (if no effec- tive
torque is exerted by the experimental apparatus, oth-
erwise higher critical force is reported, consistent with
Fig. 2 [19, 21]. Our analysis implies a force-induced
melting [21] rather than a transition to a double helix
with distortions [22]. A positive torque stabilizes DNA
even at temperatures above denaturation (Fig 2, inset), a
property exploited by thermophile bacteria living at high
temperatures [1]. As expected, negative torque destabi-
lizes DNA, a mechanism exploited in biology for DNA
opening and replication.

Under a given stretch, the critical temperature in-
creases (decreases) under positive (negative) torque, as
shown in Fig. 3. From (7) we see that T c is maximized
at Γ = Γm(f), which therefore induces the most stable
configuration at any temperature, for a certain tension
f . The highest temperature B–DNA can withstand is
achieved under zero tension and positive torque Γm =
aνΩ = 11 pN×nm, and corresponds to T cm = 91 oC.
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FIG. 3: Predicted critical temperature as function of torque
for stretched DNA at different tensions (0,15, 30, 45, 60,
75, 80, 85 90 pN). Points are experimental data from sin-
gle molecule manipulation [4] performed at 23 oC. Squares
correspond to the overstretching transition (Γ = 0, f = 60
pN) at 23oC and denaturation (Γ = 0, f = 60 pN) at
TD = 77 oC. The maximal critical temperature for a given
stretch is achieved under external torque Γm(f) given by (8),
and is 91 oC at zero tension and Γm = 11 pN×nm.

0 !"11 pN

25

30

33

35

38

39.5

!m!f "

0 20 40 60 80 100 120

0

20

40

60

80

100

Tension !pN"

T
em
pe
ra
tu
re
!o C"

!"0 pN

#4
#8

#12

0 20 40 60 80
0

20

40

60

80

Tension !pN"

T
em
pe
ra
tu
re
!o C"

FIG. 4: Predicted critical temperature as a function of ten-
sion for DNA twisted under different torque. Numbers on
curves denote the external torque in pN nm. The maximum
critical temperature at any given tension (dotted curve) is
reached at external torque Γm(f) from (8). While for nega-
tive torque the curves show a monotonic and linear decrease
(inset), for positive torque larger than 32 pN× nm (dashed
curve) curves become non-monotonic: for low temperatures
and large applied torque, B–DNA is stabilized by tension.
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DNA supercoils for packaging inside cells [1]. This cor-
responds to small positive or negative torques; in that bi-
ological regime, the critical temperature decreases mono-
tonically with an applied tension, in fact linearly, with
slope independent of the applied torque or degree of su-
percoiling. Yet, for torques larger than about 32 pN×nm,
a regime accessible to single molecule manipulation ex-
periments and potentially useful in nanotechnology, the
maximal critical temperature corresponds to a non-zero
tension, suggesting that at low temperatures and large
torques DNA can be stabilized by tension (Fig. 4).

The average change in pitch is given by 〈ω〉 =
L−1β−1∂τ lnZ = τ/ν̃ − Ω − T∂τ εB (εB is the bound
eigenvalue of the hamiltonian (6), whereas the remain-
der comes from ∆). At the critical point, we find

〈ω̃c〉 = ωD−
ωD
Ω

Γc
aν̃

+
(

1 +
ωD
Ω

) a−1Γc − of
µ̃+ ν̃

' Γc
aµ̃
, (10)

where ωD is the small negative unwinding (typically
ωD ' −10−4 rad) at denaturation (T = TD, Γ = 0,
f = 0). Equation (10) can be used to fit, from experi-
mental data [4], µ = 103 pN. When neglecting small non-
linear corrections, (10) is also a good approximation for
the torque vs. pitch curve away from criticality. While
the derivation of (10) will be presented elsewhere [19], we
note here that a well potential on an infinite half line in
(6) would generate no contribution from the bound eigen-
value εB to 〈ω̃〉 at criticality, and thus give 〈ωc〉 = Γc

aν̃−Ω,
the expected behavior for separated strands. The discon-
tinuity at criticality in 〈ω〉 seen in experiments therefore
comes from the finiteness of lateral entropy: when bases
open in a bubble, they cannot separate infinitely far from
each other: as tension and torque are applied and back-
bones twist, the radius of DNA provides a natural barrier
for large x. This suggests that in biology, where, unlike in
manipulations under tension, larger distances are avail-
able between bases in larger openings, the average change
in pitch 〈ω〉 might access larger values before complete
strand separation occurs.

Equation (10) does not predict the tiny anomalous
overwinding under tension [23]. We believe this is a con-
sequence of neglecting the bending modes, whose ther-
mal fluctuation weakens the base’s bonds. As tension
straightens DNA, it might reduce this effect by collaps-
ing openings and thus overwinding the structure. Con-
versely, torque–induced overwinding reduces the fraction
of open bases, thereby stiffening the bending modes and
reducing the amplitude of their thermal fluctuations, re-
sulting in elongation. Essential to fully predict elonga-
tion under external loads, bending modes also perturb
our phase diagrams at low and medium tension and at
temperatures close to denaturation. We will show else-
where [19] how to incorporate them into our formalism.
Finally, a transfer integral numerical study [19] of the

anharmonic version of (3) is needed to augment our pre-
dictions at temperatures closer to denaturation, where
the effect of nonlinearity in the stacking potential is im-
portant for the transition order and precursors [24].

In summary, a range of predictions and phenomena
for DNA thermomechanics (critical lines, phase dia-
grams, supercoiling under loads, optimally stable torque,
tension-induced stability at high torque) that were inac-
cessible to previous models, or were covered partially and
numerically, have been explained here within a unifying
framework amenable to analytical treatment and further
extensions and applications. It will be interesting to test
experimentally our predictions at higher then room tem-
peratures, and also at different ionic strength.
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