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Quantum spin liquids are phases of matter whose internal structure is not captured by a local
order parameter. Particularly intriguing are critical spin liquids, where strongly interacting exci-
tations control low energy properties. Here we calculate their bipartite entanglement entropy that
characterize their quantum structure. In particular we calculate the Renyi entropy S2, on model
wavefunctions obtained by Gutzwiller projection of a Fermi sea. Although the wavefunctions are
not sign positive, S2 can be calculated on relatively large systems (>324 spins), using the variational
Monte Carlo technique. On the triangular lattice we find that entanglement entropy of the pro-
jected Fermi-sea state violates the boundary law, with S2 enhanced by a logarithmic factor. This is
an unusual result for a bosonic wave-function reflecting the presence of emergent fermions. These
techniques can be extended to study a wide class of other phases.

PACS numbers:

Entanglement properties of a ground state wave-
function can serve as a diagnostic for characterizing a
phase of matter [1]. Such a characterization is especially
useful when a phase does not break any symmetry and
consequently does not offer a local order parameter. Two
examples of this observation are the presence of a non-
zero topological entanglement entropy in a fully gapped
topological ordered state [2] and the relation between the
edge state spectrum and the entanglement spectrum for
the quantum Hall states [3]. Entanglement thus encodes
fundamental properties of a quantum phase, and inter-
sects diverse fields including quantum information, many
body physics and high energy theory [1].

Critical spin-liquids are a distinct class of states that
also do not have a local order parameter. These gapless
states are less well understood compared to the gapped
spin-liquids which have topological order. Interestingly
though, a large class of experiments suggest that they
may well have been already realized in certain organic
materials [4], which are quantum antiferromagnets on
the triangular lattice. To gain a deeper understanding of
these phases, in this paper we investigate the quantum
structure of a class of critical spin-liquids from an in-
formation theoretic point of view. We demonstrate that
entanglement properties of model ground states can be
calculated, even on fairly large systems involving > 324
spins. In contrast to quantum Monte Carlo[5], we deal
with non-positive wavefunctions that potentially describe
ground states of frustrated quantum magnets.

Both gapped as well as gapless spin-liquids may be
obtained within a slave-particle approach [6], where one
expresses the spin operator in terms of a product of oper-
ators (f), denoting emergent particles : ~S = f †

σ
~σσσ′

2 fσ′ .
In a spin liquid phases, these emergent particles are the
appropriate low energy excitations. Inevitably, they ap-
pear coupled to gauge fields. Gapped spin liquids are
described by topological quantum field theories and are
relatively well understood. In contrast, spin-liquids with
gapless, strongly interacting excitations (critical spin liq-

uids), are described by matter-gauge theories which are
harder to analyze [7].

A critical spin liquid, the spinon fermi sea (SFS) state,
has been invoked [8] to account for the intriguing phe-
nomenology of aforementioned triangular lattice organic
compounds [4]. In the SFS state, the f particles hop
on the triangular lattice sites giving rise to a Fermi sea,
while strongly interacting with an emergent ‘electromag-
netic’ U(1) gauge field. The metal like specific heat and
thermal conductivity seen in these materials is poten-
tially an indication of the spinon Fermi surface. A can-
didate ground state spin wavefunction for the SFS state
suggested by the slave-particle formalism, is obtained by
projecting out all doubly occupied states from the Fermi
sea wavefunction. This Gutzwiller projection technique
works well in one dimension. There, the projected Fermi
sea spin wavefunction captures long distance properties
of the Heisenberg chain, and is even the exact ground
state of the Haldane-Sastry [9] Hamiltonian. Similar rig-
orous results are not available in two dimensions. How-
ever, the Gutzwiller projected Fermi sea is known to have
excellent variational energy for the J2−J4 spin model on
the triangular lattice, which is believed to be appropriate
for the forementioned triangular lattice compounds[8].
Detailed comparisons between the projected wavefunc-
tion and exact numerics have also been made[10].

Using the Variational Monte-Carlo technique, we cal-
culate the bipartite entanglement entropy, in particular
Renyi entropy S2 of a critical spin liquid - the conjec-
tured spinon Fermi sea state on the triangular lattice. We
find a violation of the boundary law, with S2 enhanced
by a logarithmic factor, an unusual result for a bosonic
wavefunction strongly suggesting the presence of emer-
gent fermions with a Fermi surface. This is also consis-
tent with the recent exact numerical studies on multi-leg
ladder spin-1/2 ring exchange models where the central
charge is found to increase in proportion to the number
of legs [10]. We also calculate Renyi entropy for an al-
gebraic spin liquid state [6, 11] obtained by Gutzwiller
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projecting the wave function of free Fermions on a π flux
square lattice. This state is found to obey the area law,
consistent with the presence of emergent Dirac fermions
in the system. Finally, we calculate Renyi entropy for
projected Fermi sea state on the square lattice. Here a
nested Fermi sea is present before projection. In this case
the projection is found to result in long range magnetic
order (see also [12]) and a significant reduction in en-
tanglement entropy, especially of the area law violating
term, compared to the unprojected Fermi gas. These dif-
ferent trends are found to set in even at relatively small
system sizes, suggesting that this probe may be applied
in the context of exact diagonalization and DMRG.

Renyi Entanglement Entropy: Given a normalized
wavefunction, |φ〉, and a partition of the system into sub-
systems A and B, one can trace out the subsystem B to
give a density matrix on A: ρA = TrB|φ〉〈φ|. The Renyi
entropies are defined by:

Sn =
1

1− n
log(TrρnA) (1)

It is common to pay special attention to the von Neu-
mann entropy, S1 = −Tr[ρA log ρA] (obtained by taking
the limit n → 1). However, the Renyi entropies seem
equally good measures of entanglement as they share
many properties with von Neumann entropy S1. Here
we will focus on S2 = − log

(

Trρ2A
)

. For ground states of
local Hamiltonians, both S1 and S2 are expected to follow
a boundary law, i.e. they only grow as the surface area
of the boundary of region A [1]. A well known violation
occurs for critical phases in 1D, where in contrast to a
constant as expected from the area law, S1, S2 ∼ logLA,
where LA is the size of system A embedded inside an in-
finite line[13]. In higher dimensions, D = 2, 3 an area law
is believed to hold for S1, S2 even for gapless states such
as ordered phases with goldstone modes, and quantum
critical points [5, 14, 15]. Both S1, S2 violate the area
law in higher dimensions for free fermions with a Fermi
surface [16, 17] and also share identical topological en-
tanglement entropies for gapped phases[18]. Therefore
S2 seems as good a measure of physical properties as the
von Neumann entropy, and is often easier to calculate [5]
as we detail now for our problem. Furthermore we note
the inequality S1 ≥ S2. This will be important when we
find violation of area law for S2 as this would imply area
law violation for the von Neumann entropy S1 as well.

Monte Carlo Evaluation: Consider the wavefunc-
tion φ(a, b), where a (b) be the configuration of
subsystem A (B). The Renyi entropy S2 is con-
veniently expressed by imagining two copies of
the system. Construct the product wavefunction:
|Φ〉 =

∑

a,b,a′,b′ φ(a, b)φ(a
′, b′)|a, b〉|a′, b′〉, and define the

SwapA operator [5], which swaps the configurations of
the A subsystem in the two copies: SwapA|a, b〉|a

′, b′〉 =
|a′, b〉|a, b′〉 then it is easily shown:

e−S2 =
〈Φ|SwapA|Φ〉

〈Φ|Φ〉
(2)

This can be rewritten in a form suitable for Monte Carlo
evaluation. Defining configurations α1 = a, b, α2 = a′, b′

and β1 = a′, b, β2 = a, b′,

〈SwapA〉 =
∑

α1α2

ρα1
ρα2

f (α1, α2) (3)

Here f (α1, α2) =
φβ1

φβ2

φα1
φα2

is averaged by sampling with

the normalized weights ραi
= |φαi

|2/
∑

αi
|φαi

|2

The Gutzwiller projected wavefunctions we will con-
sider can be written as products of determinants. Such
wavefunctions can be efficiently evaluated, which forms
the basis for Variational Monte Carlo technique [19].
Since the entanglement entropy is at the very least ex-
pected to scale as the length of the boundary of subsys-
tem A, ∼ LA, 〈SwapA〉 is at least exponentially small in
LA. Evaluating this small quantity may pose a problem
- one solution called the ‘ratio trick’ discussed in Ref [5]
in the valence bond basis unfortunately does not work
in our case, since the relevant states do not always have
non-vanishing overlap unlike in that basis.
A more serious problem arises from the fact that

f (α1, α2) is not necessarily positive, for the wave-
functions we will study. This is in contrast to
Quantum Monte Carlo studies with positive ground
state wavefunctions[5]. With time reversal symmetry,
f (α1, α2) is real but can fluctuate in sign. The calcu-
lational effort for 〈SwapA〉 is then found to scale expo-
nentially with LA. Although Variational Monte Carlo
schemes are generally free of the fermionic sign problem,
we encounter a mild variant here. Below we partially
mitigate this by introducing a ‘sign trick’ algorithm that
separates SwapA into a product of two factors, both cal-
culable within Variational Monte Carlo. This renders the
calculation doable within few percent error for boundary
sizes LA

<
∼ 10. For positive wavefunctions (i.e. ones that

obey Marshall sign) we find an immense simplification,
and the calculational cost only scales polynomially with
LA as in conventional Variational Monte Carlo. For a
fixed value of boundary LA, the cost of computation al-
ways scales polynomially with the total system size L
irrespective of the wavefunction.
Sign Trick: After some algebra [20], Eqn.2 can in gen-

eral be rewritten as a product of two averages:

〈SwapA〉 =
∑

α1α2

ρα1
ρα2

|f (α1, α2) |

[

∑

α1α2

ρ̃α1,α2
eiφ(α1,α2)

]

= 〈SwapA,mod〉〈SwapA,sign〉

For real wavefunctions, the phase factor reduces to a
sign. Empirically, we find this leads to significant gains,
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the advantages are detailed in [20]. We benchmarked our
algorithm for three free fermion tight binding problems
on: 1) A one dimensional chain of L = 200 sites with LA

up to 100 sites, 2) An 18×18 square lattice with the linear
size LA up to 7 sites. 3) A honeycomb (graphene) lat-
tice with Dirac dispersion. We find very good agreement
with the exact results [20] that were calculated using the
correlation matrix technique [21].

Gutzwiller Projected Spin Liquid Wavefunctions: Next
we calculate Renyi entropy for the problems of our ac-
tual interest namely projected Fermi liquid wave func-
tions which are considered good ansatz for ground states
of critical spin-liquids. We analyze two different classes
of critical spin-liquids: states that at the slave-particle
mean-field level have a full Fermi surface of spinons and
those with only nodal fermions. For a triangular lat-
tice with uniform hopping trr′ = t one obtains a Fermi
surface of spinons at the mean-field level while for a
square-lattice with π flux through every plaquette (i.e.
Π�trr′ = −1) one obtains nodal Dirac fermions. We also
study the projected wave function on square lattice with
uniform hopping (and no flux).

The wave-functions for these spin-liquids are con-
structed by starting with a system of spin-1/2 fermionic
spinons frα hopping on a finite lattice of size L1 × L2
at half-filling with a mean field Hamiltonian:HMF =
∑

rr′

[

−trr′f
†
rσfr′σ + h.c.

]

. The spin wave-function is
given by |φ〉 = PG|φ〉MF where |φ〉MF is the ground
state of HMF and the Gutzwiller projector PG =
∏

i (1− ni↑ni↓) ensures exactly one fermion per site. The
sign-structure of the projected wave-function depends
markedly on the underlying lattice. For a bipartite lattice
with trr′ non-zero and real only for the opposite sublat-
tices, one can prove that the wave-function satisfies the
Marshall sign rule[20]. Thus, for a bipartite lattice, one
only needs to calculate 〈SwapA,mod〉 since 〈SwapA,sign〉
trivially equals unity. The projected wave-function for
the square lattice with and without π-flux (as well as that
for the one-dimensional Haldane-Shastry state) satisfies
the Marshall’s sign rule while that for the triangular lat-
tice doesn’t. We discuss these three cases separately. The
one dimensional case was previously discussed in [22].

Triangular lattice: As mentioned above the mean-field
ansatz describes a spin-liquid with spinons hopping on a
triangular lattice. We consider a lattice with total size
18× 18 on a torus and the region A of square geometry
with linear size LA upto 8 sites. We find a clear signa-
ture of LA logLA scaling in Renyi entropy (Fig. 1). This
is rather striking since the wave-function is a spin wave-
function and therefore could also be written in terms of
hard-core bosons. This result strongly suggests the pres-
ence of an underlying spinon Fermi surface. In fact the
coefficient of the LA logLA term is rather similar before
and after projection. This observation may be rational-
ized by picturing a two dimensional Fermi surface as a
collection of many independent one dimensional systems

FIG. 1: Renyi entropy data for projected and unprojected
Fermi sea state on the triangular lattice of size 18 × 18 with
LA = 1 . . . 8. Note, projection barely modifies the slope,
pointing to a Fermi surface surviving in the spin wavefunc-
tion. We also separately plot S2,sign and S2,mod (as defined
in the text) for the projected state, the former dominates at
larger sizes.

in momentum space, each giving rise to a logL contri-
bution. Gutzwiller projection then just removes a single
charge degree of freedom.

It is interesting to compare the contribution to S2

from S2,sign ≡ − log(
〈

SwapA,sign

〉

) and S2,mod ≡

− log(
〈

SwapA,mod

〉

) separately. Numerically, S2,sign ap-
pears to be responsible for the logarithmic violation of
the area law (Fig. 1). This suggests that the sign struc-
ture of the wavefunction is crucial at least in this case.

The area-law violation of the Renyi entropy for
Gutzwiller projected wave-functions substantiates the
theoretical expectation that an underlying Fermi surface
is present in the spin wavefunction.

Square lattice with π flux : The mean-field ansatz con-
sists of spinons with Dirac dispersion around two nodes,
say, (π/2, π/2) and (π/2,−π/2) (the locations of the
nodes depend on the gauge one uses to enforce the π
flux). The projected wave-function has been proposed in
the past as the ground state of an algebraic spin liquid.
The algebraic spin-liquid is believed to be describable by
a strongly coupled conformal field theory of Dirac spinons
coupled to a non-compact SU(2) gauge field [6, 11]. Be-
cause of this the algebraic spin-liquid has algebraically
decaying spin-spin correlations. We verify this explicitly
for the projected wavefunction using Variational Monte
Carlo on a 36×36 lattice [20]. This state is different from
that in Ref. [23], where Majorana fermions are coupled
to a discrete Z2 gauge field making them effectively free
at low energies, in contrast to our critical state.

Square lattice being bipartite, the projected wavefunc-
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FIG. 2: Renyi entropy for the projected Fermi sea state on the
triangular lattice and square (with and without π-flux) lattice
as a function of the perimeter P of the subsystem A. Here C

is the constant part of the S2. We find S2 ∼ P log(P )+C for
the projected triangular lattice state while S2 ∼ P +C for the
projected π-flux square lattice state. For the square lattice
state (no flux), the projection leads to a significant reduction
in S2 suggesting at most a very weak violation of the area-law.

tion satisfies Marshall’s sign rule and hence we were able
to perform Monte Carlo calculation of Renyi entropy on
bigger lattice sizes compared to the triangular lattice
case. We chose the overall geometry as a torus of size
LA×4LA with both region A and its complement of sizes
LA×2LA (the total boundary size being LA+LA = 2LA).
We considered LA upto 14 sites . We found that the pro-
jected wavefunction follows an area law akin to its unpro-
jected counterpart and has the scaling S2 ≈ 0.30LA + g
where g ≈ 1.13 is a universal constant that depends only
on the aspect ratio of the geometry [15]. This is consis-
tent with the presence of Dirac fermions at low energies.

Square lattice without any flux : The unprojected Fermi
surface is nested. Since projection amounts to taking
correlations into account, one might wonder whether the
Fermi surface undergoes a magnetic instability after the
projection. Indeed, we found non-zero magnetic order
in the projected wave-function, consistent with an in-
dependent recent study Ref. [12]. This was verified by
calculating spin-spin correlations on a 42×42 lattice [20].
Renyi entropy calculations were done on a lattice of to-
tal size 24 × 24 with region A being a square upto size
12× 12. The results are shown in the Fig. 2. Though it
is difficult to rule out presence of a partial Fermi surface
from Renyi entropy, there is a significant reduction in the
Renyi entropy as well as the coefficient of LAlogLA term
as compared to the unprojected Fermi sea.

Summary: In this paper we described a route to cal-
culating the Renyi entropy S2 for a wide variety of wave-

functions that can handled by the Variational Monte
Carlo method. Our starting point is the ground state
wave-function rather than the Hamiltonian. This al-
lows us to study interesting states on relatively large
systems, that may not be obtainable from sign problem
free Hamiltonians. We calculated S2 for Gutzwiller pro-
jected states that have been conjectured as the ground
state wave-functions for gapless spin-liquids. We found
that the projected Fermi sea on the triangular lattice vi-
olates the area law strongly indicating the presence of
an emergent Fermi surface of neutral fermions. The sign
structure of the wave-function makes a dominant contri-
bution to the entropy. We note our algorithm is readily
generalizable to calculate the higher Renyi entropies Sn

(n > 2). Also, it can be applied to study partially pro-
jected Fermi sea wave-function which model correlated
Fermi liquids. This opens a window to study the entan-
glement entropy of fermions away from the free limit. A
very interesting direction that we leave for the future, is
testing the Widom conjecture, proposed currently for free
fermions[16], to interacting states with Fermi surfaces.
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