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Abstract

Quantum phase diffusion in a small underdamped Nb/AlOx/Nb junction (∼ 0.4µm2) is demonstrated in

a wide temperature range of 25-140 mK where macroscopic quantum tunneling (MQT) is the dominant

escape mechanism. We propose a two-step transition model todescribe the switching process in which the

escape rate out of the potential well and the transition ratefrom phase diffusion to the running state are

considered. The transition rate extracted from the experimental switching current distribution follows the

predicted Arrhenius law in the thermal regime but is greatlyenhanced when MQT becomes dominant.
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Classical and quantum diffusion of Brownian particles in titled periodic potential plays a fun-

damental role in the dynamical behavior of many systems in science and engineering [1–16].

Examples include current biased Josephson junctions [1–9], colloidal particles in arrays of laser

traps [10, 11], cold atoms in optical lattice or Bose-Einstein condensates [12–14], and various

biology-inspired systems known as Brownian motors (molecular motors or life engines), which

receive considerable attention in physics [15] and chemistry [16]. Because of the design flexi-

bility, manufacturability, and controllability Josephson junctions provide an excellent testbed for

making quantitative comparison of experimental data with theoretical predictions and unraveling

possible new physics in the tilted periodic potential systems.

The dynamics of a current biased Josephson junction can be visualized as a fictitious phase

particle of massC moving in a tilted periodic potentialU(ϕ) = −EJ(iϕ + cosϕ). Here,C is junc-

tion capacitance,i = I/Ic is the junction’s bias current normalized to its critical current, the phase

particle’s positionϕ is the gauge invariant phase difference across the junction, andEJ = ~Ic/2e

is the Josephson coupling energy withe and~ being the electron charge and Planck’s constant,

respectively. Previous experiments using Josephson junctions have identified three distinctive dy-

namical states, as shown schematically in Fig. 1. In the firststate, the phase particle is trapped in

one of the metastable potential wells and undergoes small oscillation around the bottom of the well

with plasma frequencyωp. Due to thermal and/or quantum fluctuations the particle has a finite rate

Γ1 escaping from the trapped state. The escape rate becomes significant when the barrier height

∆U is not much greater thankBT or ~ωp, wherekB is the Boltzmann constant andT denotes the

temperature, respectively. After the particleescapes from the initial well, depending on the energy

gainδU = Φ0I (Φ0 being the flux quantum) and the lossED due to damping (c.f. Fig. 1), it could

FIG. 1: (Color online) Phase particle in the trapped, diffusion, and running states (denoted byn = 1, 2, 3,

respectively) with occupation probabilityρn in a tilted washboard potential.
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enter either the second dynamical state called phase diffusion (PD) or the final running state. In the

former case as the bias currentI is increased further the particle will eventually make a transition,

characterized by a rate constantΓ2, to the running state. While escape from the trapped state to PD

is difficult to detect transition to the running state is signaled bya sudden jump in the dc voltage

of the junction (calledswitching) and thus can be readily captured in real time by increasingI

continuously from zero until a switching occurs [17].

The fundamental importance of understanding PD has stimulated many studies in recent years.

However, experimental studies were focused mostly on the classical regime where thermal acti-

vation (TA) is the dominant escape mechanism and thermal fluctuation governs the PD process

[1–9]. On the other hand, in the quantum regime where macroscopic quantum tunneling (MQT)

dominates, one expects that quantum fluctuation induced tunneling will play an important role in

the PD process and subsequent transition to the running state thus the term quantum PD (QPD)

has been coined in the literature [15, 18–20]. However, although theoretical progress of QPD in

overdamped systems has been remarkable over recent years [18, 19] the situation is so far much

less clear for underdamped systems [15, 20].

In this work, we demonstrate QPD in a small underdamped Josephson junction over a wide

temperature range of 25 mK to 140 mK. To contrast QPD with classical PD, we use two Nb-AlOx-

Nb trilayer junctions of different sizes (see Table I) havingT0 ≪ Tcr andT0 ≫ Tcr, respectively.

Here,T0 is the temperature above which PD occurs andTcr is the classical-to-quantum crossover

temperature below which MQT dominates. One of the hallmarksof PD in underdamped junctions

TABLE I: Parameters of two Nb/AlOx/Nb junctions S and L used in this work.RN is normal-state resistance

obtained fromI-V curves. Ic, C, andR for L are determined from fits to experiment using TA and MQT

theories below 450 mK and Monte Carlo simulations above it. Those for S are obtained considering itsRN

ratio to L (Note a slightly largerR chosen to have a better fit). See the text for details.

Junction Areaa(µm2) RN(kΩ) Ic(nA) C(fF) R(Ω) Tcr(mK) T0(mK)

S 0.39 15.1 122 19.6 1800 140 < 25

L 1.54 3.84 480 77 315 125 ∼450

aEstimated for L from fittedC and a specific capacitance of 50 fF/µm2. The value for S is obtained via itsRN ratio

to L. Nominal areas for junctions S and L were 0.52 and 1.61µm2, respectively.
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FIG. 2: (Color online) Experimentally measuredP(I) of junction S at some temperatures indicated. Inset

shows theI-V trace of the junction at 30 mK.

is the narrowing of the widthσ of switching current distributionP(I) as temperature increases

[5–8]. This is observed clearly in the measuredσ(T ) of the larger junction L aboveT L
0 ≃ 450

mK ≫ T L
cr, which indicates that PD in this case is classical in nature.In sharp contrast, for the

smaller junction S the widthσ continues to increase as temperature decreases to the lowest value

of 25 mK. When plotted in semi-logarithmic scaleσ vs. T shows a clear increase of slope around

T S
cr = 140 mK, pointing to a change from classical PD to QPD. We will extract the transition

rateΓ2 directly from the experimental results and show that QPD is fundamentally different from

classical PD.

Two Nb/AlOx/Nb junctions used in this study were fabricatedon the same chip with nom-

inal areas of 0.52 and 1.61 µm2 for junctions S and L, respectively. Compared with previ-

ous works reported in Refs. [5] and [6], where dc SQUIDs were used to tuneIc, our approach

kept Ic/C constant. This unique approach is essential to extend PD to the quantum regime.

SinceTcr = ~ωp[(1 + 1/4Q2)1/2 − 1/2Q]/2πkB ∼ ~ω0/2πkB scales with the plasma frequency

ωp = ω0

(

1− i2
)1/4
, whereω0 = (2πIc/Φ0C)1/2 andQ = ωpRC (R being junction’s damping resis-

tance),Tcr is approximately independent of the junction sizes as long as they are fabricated from

the same trilayer. On the other hand,T0 can be reduced by making smaller junctions therefore we

are able to tuneT0 andTcr independently to meet the conditionT0 ≪ Tcr required for observing

QPD [21].

Figure 2 shows the measuredP(I) from 25 to 800 mK for junction S with itsI-V curve at 30 mK

displayed in the inset. In our experiment,P(I) was measured by the time-of-flight technique [8, 22]

with di/dt = 110/sec for sample S and 163/sec for sample L. Each measuredP(I) consisted of

50000 switching events. In Fig. 3, we plotσ and the meanIs of P(I) versus temperature (symbols)
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FIG. 3: (Color online) (a) Widthσ and meanIs of experimentalP(I) of junction S (symbols). (b) Cor-

responding data of junction L. Solid lines in (b) are calculated from TA and MQT theories while dashed

lines from Monte Carlo simulations considering thermal PD [5, 8]. Inset showsσ of junction S plotted in

semi-logarithmic scale. Two solid lines are guides to the eye displaying a slope turning nearT S
cr = 140 mK.

for junction S in (a) together with those of junction L in (b).For junction L the measuredσ(T )

shows the familiar classical PD started at temperatureT L
0 ≃ 450 mK well aboveT L

cr = 125 mK.

The solid lines in (b) are calculated according to the TA [23]and MQT [24] rate formulas using

the parameters listed in Table I. The dashed lines are from Monte Carlo simulations considering

thermal fluctuation and PD [5, 8]. In contrast to junction L the observedσ for junction S in

Fig. 3(a) shows a monotonic decrease with increasing temperature, indicating that PD occurred

in the entire temperature range of the experiment. Furthermore when plotting the data in semi-

logarithmic scale as shown in the inset of Fig. 3 we notice a distinctive slope decrease aroundT S
cr

= 140 mK from MQT to TA regimes. Such a decrease can be easily understood since TA causes

σ to increase with increasingT which partially cancels the effect of negative (1/σ)dσ/dT due to

PD.

To gain further insight and have a quantitative grasp on the effects of escape (from the trapped

state to PD) and transition (from PD to the running state) on switching current distribution, regard-

less whether TA or MQT is the dominant mechanism, we set up thefollowing master equation
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according to the two-step transition model shown in Fig. 1:
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dρ1/dt = = −Γ1 ρ1

dρ2/dt = = Γ1 ρ1 − Γ2 ρ2

dρ3/dt = = Γ2 ρ2,

(1)

whereρn (n = 1, 2, 3) is probability of finding the phase particle in staten. SinceP(I) = dρ3/dI, it

follows straightforwardly that

Γ2(I) =
(dI/dt)P(I)

1−
∫ I

0
P(I′)dI′ − e−

1
dI/dt

∫ I
0
Γ1(I′ )dI′

. (2)

Eq. (2) shows thatΓ2(I) can be extracted from measuredP(I) providedΓ1(I) is known, which

is true in our experiment. Notice that in the limit ofΓ2 → ∞, Eq. (2) leads directly toΓ1(I) =

(dI/dt)P(I)/[1 −
∫ I

0
P(I

′
)dI

′
] which is identical to the result of Fulton and Dunkleberger[17] in

which PD is absent. In the opposite limit ofΓ2 ≪ Γ1, the same expression is obtained withΓ1

replaced byΓ2: Γ2(I) = (dI/dt)P(I)/[1 −
∫ I

0
P(I

′
)dI

′
]. These results mean that the much slower

process plays the major role in determiningP(I), as expected. In the more general situation of

Γ2 ∼ Γ1, Eq. (2) enables one to separate the effect ofΓ2 on switching current distributions from

that ofΓ1. The inverse procedure of computingP(I) from Γ1 andΓ2 is given by:

P(I) =
Γ2

(dI/dt)2
e−

1
dI/dt

∫ I
0 Γ2dI

′
∫ I

0
Γ1e−

1
dI/dt

∫ I
′

0 (Γ1−Γ2)dI
′′
dI
′
. (3)

Eqs. (2) and (3) thus allow us to quantitatively investigatethe dependence of (Q)PD on bias cur-

rent and the interplay between particle’s escape and (Q)PD.In Fig. 4(a), we plotΓ1 (solid lines)

calculated using the parameters of junction S andΓ2 (symbols) extracted from the measuredP(I)

using Eq. (2). It can be seen that atT = 800 mK,Γ1 is several orders of magnitude greater thanΓ2.

The measuredP(I) is therefore entirely determined byΓ2. As temperature decreases,Γ1 is seen to

progressively approachΓ2.

Having clearly established that PD occurs in both classicaland quantum regimes in junction S,

we now use the data in Fig. 4(a) to further demonstrate the keydifference between classical PD

and QPD. In Fig. 4(b), we plotΓ2 versus 1/T at three bias currents (thus fixed potentials) of 48,

52, and 56 nA, which shows distinct features below and aboveT S
cr.While the data aboveT S

cr follow

the straight lines, indicating thatΓ2 in the classical regime obeys the Arrhenius lawΓ2 displays a

much weaker 1/T dependence at belowT ≪ T S
cr. We note that similar behavior in the classical

regime was discussed previously by Vionet al. [3] for overdamped system where the diffusive
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FIG. 4: (Color online) (a) Transition rateΓ2 (symbols) and escape rateΓ1 (solid lines) of junction S at some

typical temperatures. (b)Γ2 ∼ 1/T at three fixed currents as indicated by the vertical arrows in(a). Dashed

and dotted lines are fits displaying the Arrhenius law. (c)I ∼ T for fixedΓ2 = 2000 sec−1 as indicated by a

horizontal arrow in (a). Solid lines in (b) and (c) are guidesto the eye.

particle is considered to overcome an effective dissipation barrier. In that case, the transition rate

from PD to the running state, which retains the familiar Kramers form, was derived. Fitting the

data aboveT S
cr usingΓ2 = a exp(−b/T ), we obtaina = 5.2 × 107 sec−1, b = 2.3 K for I = 48 nA

(dashed line) anda = 3.3× 108 sec−1, b = 1.7 K for I = 52 nA (dotted line). The effective barrier

b appears smaller as compared to the calculated barrier height ∆U of 2.68 and 2.46 K due to the

motion of the diffusive particles, which is physically quite reasonable. These results indicate that

in the thermal regime a dissipation-barrier description isalso applicable to PD in underdamped

junctions.

Machuraet al. recently investigated the diffusion problem of overdamped particles using the

Smoluchowski equation incorporating quantum fluctuations[19]. They found that the particle’s

average velocity〈v〉 increases with increasing temperature and quantum effects always assist the

particle to overcome barriers leading to a larger〈v〉 than that in absence of quantum fluctuations.

Because in our underdamped junction the dc voltage, which isproportional to〈v〉, produced by PD

is too low to be detected directly [25], it can nevertheless be expected that a larger〈v〉 would result

in a largerΓ2 since the increased kinetic energy makes transitions to therunning state easier. For

this reason, the data in Fig. 4(b) are consistent with the theoretical prediction since extrapolating
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Γ2 from the classical to the quantum regime would lead to rates that are much lower than the

experimental data. Therefore, the much weaker 1/T dependence ofΓ2 belowT S
cr, in a stark contrast

to the Arrhenius behavior aboveT S
cr, manifests thequantum nature of the diffusion process atT <

T S
cr.

In Fig. 4(c) we plotI versusT for a constantΓ2 = 2000 sec−1, which again shows a distinctive

change of slope aroundT S
cr similar to that ofσ. The approximate linearI −T dependence above

T S
cr can be qualitatively explained. In the absence of thermal fluctuations transition from PD to

running state is expected to occur deterministically atI0 whereδU0 = (h/2e)I0 = ED. For T > 0

the phase particle will exit the PD state prematurely because the particle on average acquires an

additional thermal energy of∼ kBT . Thus the condition for transition out of PD needs to be revised

to δU + kBT = ED. Assuming junction’s damping, and thusED, saturates at lowT we obtain

(h/2e)I = ED− kBT. The predicted slope|s| = 2ekB/h ≈ 7 nA/K is comparable to the experimental

value of 15 nA/K in the thermal regime in Fig. 4(c), which is quite reasonable considering the

simplicity of the model. BelowT S
cr, however, the measured|s| increased to about 68 nA/K, about

an order of magnitude greater than 2ekB/h which remains unexplained.

In conclusion, QPD was demonstrated and systematically studied in a small underdamped Nb

Josephson junction. Using junctions of different sizes fabricated on the same chip we were able to

calibrate the relevant parameters of the small junction andat the same time extended QPD over a

wide temperature range. We showed thatσ decreases monotonically with increasing temperature

and there is a distinctive change of slope atTcr below and above which QPD and classical PD

occur. We developed a two-step transition model with which the effects of escape rateΓ1 (from

the trapped state) and the transition rateΓ2 (from PD to the running state) on switching current

distributions can be separated andΓ2 be determined from the measuredP(I) directly. It was found

thatΓ2 vs. T at fixed bias current, and thus fixed potential landscape, follows the Arrhenius law

in the case of classical PD. The most important finding was that for QPD, Γ2 is exponentially

higher than that expected for the classical PD and has a much weaker 1/T dependence. The

similarities between the temperature dependence ofΓ1 andΓ2 in underdamped Josephson junctions

going from classical to quantum regimes were striking. We wish our experimental progress and

advancement in data analysis will stimulate further theoretical and experimental studies of and

lead to a better understanding of the quantum diffusion phenomena in underdamped tilted periodic

potential systems.
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