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Quantum spin Hall (QSH) state of matter is usually considered to be protected by time-reversal
(TR) symmetry. We investigate the fate of the QSH effect in the presence of the Rashba spin-orbit
coupling and an exchange field, which break both inversion and TR symmetries. It is found that the
QSH state characterized by nonzero spin Chern numbers C± = ±1 persists when the TR symmetry
is broken. A topological phase transition from the TR symmetry-broken QSH phase to a quantum
anomalous Hall phase occurs at a critical exchange field, where the bulk band gap just closes. It is
also shown that the transition from the TR-symmetry-broken QSH phase to an ordinary insulator
state can not happen without closing the band gap.
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The quantum spin Hall (QSH) effect is a new topolog-
ically ordered electronic state, which occurs in insulators
without a magnetic field. [1] A QSH state of matter has
a bulk energy gap separating the valence and conduction
bands, and a pair of gapless spin filtered edge states on
the boundary. The currents carried by the edge states
are dissipationless due to the protection of time reversal
(TR) symmetry and immune to nonmagnetic scattering.
The QSH effect was first predicted in two-dimensional
(2D) models [2, 3]. It was experimentally confirmed soon
after, not in graphene sheets [2] but in mercury telluride
(HgTe) quantum wells [3, 4].

Graphene hosts an interesting electronic system. Its
conduction and valence bands meet at two inequivalent
Dirac points. Kane and Mele proposed that the intrinsic
spin-orbit coupling (SOC) would open a small band gap
in the bulk and also establish spin filtered edge states
that cross inside the band gap, giving rise to the QSH
effect [2]. The gapless edge states in the QSH systems
persist even when the electron spin ŝz conservation is de-
stroyed in the system, e.g., by the Rashba SOC, and are
robust against weak electron-electron interactions and
disorder [2, 5]. While the SOC strength may be too weak
in pure graphene system, the Kane and Mele model cap-
tures the essential physics of a class of insulators with
nontrivial band topology [6, 7]. A central issue relating to
the QSH effect is how to describe the topological nature
of the systems. A Z2 topological index was introduced
to classify TR invariant systems [8], and a spin Chern
number was also suggested to characterize the topological
order [5]. The spin Chern number was originally intro-
duced in finite-size systems by imposing spin-dependent
boundary conditions [5]. Recently, based upon the non-
commutative theory of Chern number [9], Prodan [10]
redefined the spin Chern number in the thermodynamic
limit through band projection without using any bound-
ary conditions. It has been shown that the Z2 invariant
and spin Chern number yield equivalent description for
TR invariant systems [10–12].

The QSH effect is considered to be closely related to

the TR symmetry that provides a protection for the edge
states and the Z2 invariant. An open question is whether
or not we can have QSH-like phase in a system where
the TR symmetry is broken. Very recently, it was sug-
gested [13] that the quantum anomalous Hall (QAH) ef-
fect can be realized in graphene by introducing Rashba
SOC and an exchange field. In this Letter, we study the
Kane and Mele model by including an exchange field. We
calculate the spin Chern number Cs analytically, and use
this integer invariant to distinguish different topological
phases in the model with breaking TR symmetry. We
find a TR symmetry-broken QSH phase with C± = ±1,
indicating that the QSH state could survive, regardless
of the broken TR symmetry, until the exchange field is
beyond a critical value, at which the bulk band gap closes
and reopens, and the system enters a QAH phase with
C± = 1 (or −1). By further inclusion of an alternating
sublattice potential, we show that the transition from
the TR-symmetry-broken QSH phase to an ordinary in-
sulator state is generally accompanied by closing of the
band gap. Our conclusion extends the conditions under
which the topological QSH state of matter can happen,
and opens the door to magnetic manipulation of the QSH
effect.
We begin with the Kane and Mele model defined on a

2D honeycomb lattice [2, 5] with the Hamiltonian
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Here, the first term is the usual nearest neighbor hopping
term with c†i = (c†i↑, c

†
i↓) as the electron creation opera-

tor on site i and the angular bracket in 〈i, j〉 standing
for nearest-neighboring sites. The second term is the in-
trinsic SOC with coupling strength Vso, where ~σ are the
Pauli matrices, i and j are two next nearest neighbor
sites, k is their unique common nearest neighbor, and
vector ~dik points from k to i. The third term stands for
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the Rashba SOC with coupling strength VR, and the last
term represents a uniform exchange field of strength g.
For convenience, we will set ~, t and the distance between
next nearest neighbor sites all to be unity.

We expand Hamiltonian (1) in the long-wavelength
limit at Dirac points K and K ′ to the linear order in

the relative wave vector k =
√

k2x + k2y [2]. The base

vectors are chosen as {cA↑, cA↓, cB↑, cB↓}, with A and B
standing for the two sublattices. We consider first the
relatively simple case where g = 0 [2]. It is straightfor-
ward to find that for VR < Vso, there is a finite energy
gap, ∆E =

√
3(Vso − VR), which corresponds to a topo-

logical insulating state exhibiting the QSH effect. For
VR ≥ Vso, the gap vanishes, and the conductance and
valence bands cross at Dirac points K and K ′. The wave
functions for the two valence bands near the Dirac point
K are given by
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Here, E1,2 =
√
3
2 (−

√

k2 + (VR ± Vso)
2 ±VR) are the cor-

responding eigenenergies with subscripts 1 and 2 repre-
senting two bands originating from the sublattice degrees
of freedom, F1(k) and F2(k) are normalization constants,

and θ is the polar angle of ~k in the reciprocal space.

For finite g, the obtained analytic expressions for the
eigenenergies are too long to write here. The energy gap
∆E between the conduction and valence bands is plotted
in Fig. 1a as a function of |g|/Vso for some different values
of VR/Vso. It is found that, for VR < Vso with increasing
|g| from 0, the gap first decreases; as |g| reaches a crit-
ical value gc, the gap closes at k = 0 point; and as |g|
further increases, the gap reopens. The critical exchange
energy gc is determined by the condition of touching the
conduction and valence bands. For VR < Vso, we have

gc
Vso

=

√
3

2

[

1−
(

VR
Vso

)2
]

. (3)

It indicates that gc decreases with increasing VR/Vso. For
VR ≥ Vso, we have gc = 0, and the band gap always ex-
ists for finite g. As will be argued below, the insulating
state for |g| < gc corresponds to the QSH phase, while
that for |g| > gc is also topologically nontrivial with gap-
less chiral edge states, exhibiting a quantized charge Hall
conductance.

The definition of spin Chern number Cs relies on a
smooth decomposition of the occupied valence band into
two sectors through diagonalization of the electron spin
operator ŝz = 1

2 σ̂z in the valence band. [10] Since ŝz com-
mutes with momentum, the decomposition can be done

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

1.2

1.0

0.8

VR/VSO=0.5 (b)

∆
E
/V

S
O

 

 

∆
σ

|g|/V
SO

 

 

 

(a)

VR/VSO=0.5

0.8

1.0

1.2

FIG. 1: (a) Normalized energy band gap ∆E/Vso and (b)
spectrum gap of σ̂z as functions of |g|/Vso for some different
values of VR/Vso.

for each ~k separately. To simply show the calculation pro-
cedure for Cs, we first discuss the case of g = 0, where
the wave functions ϕ1(~k) and ϕ2(~k) for the valence band
have been given in Eq. (2). By diagonalizing the 2 × 2

matrix
[

〈ϕα(~k)|σ̂z |ϕβ(~k)〉
]

with α, β = 1, 2, we obtain

two eigenfunctions of σ̂z as

ψ±(k) =
1√
2
[ϕ1(~k)± ϕ2(~k)] . (4)

The minimal spectrum gap ∆σ between the eigenvalues of
σ̂z as a function |g|/Vso for different values of VR/Vso, is
plotted in Fig. 1b. The spectrum gap is always nonzero,
and so we can unambiguously calculate the corresponding
spin Chern numbers [10, 11]. The spin Chern number
can be defined as a sum over two Dirac points C± =
CK± + CK′±, where for the K point [5, 10, 11]

CK± =
1

2π

∫

d2kQK±(k), (5)

with QK±(k) = iêz · 〈∇kψ±(k)| × |∇kψ±(k)〉. CK′±
can be defined similarly. By using the polar coordi-
nate system, it is straightforward to obtain QK±(k) =
1
k

∂
∂k
PK±(k) with PK±(k) = ∓2F1(k)F2(k). Substitut-

ing the expression for QK±(k) into Eq. (5), we derive
CK(K′)± to be

CK(K′)± = [PK(K′)±(∞)− PK(K′)±(0)]. (6)

For VR < Vso, numerical calculation yields
PK(K′)±(∞) = ∓ 1

2 and PK(K′)(0) = ∓1, as shown

in Fig. 2a. It then follows CK(K′)± = ± 1
2 , and the total
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FIG. 2: Calculated PK(K′)±(k) for VR/Vso = 0.5. The ex-
change energy is taken to be (a) g = 0, and (b) g/Vso = 1.2.
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FIG. 3: Phase diagram determined by the Chern numbers in
the VR/Vso versus g/Vso plane. The phase diagram in the half
plane of VR/Vso < 0 is mirror symmetric to VR/Vso > 0, and
hence not plotted.

spin Chern numbers are C± = ±1. Therefore, at g = 0,
VR < Vso corresponds to a topological QSH insulator, as
expected.

Now we consider the finite g case. As has been dis-
cussed above, the gaps of energy and spin always exist
for finite g except for |g| = gc, so that the spin Chern
number can be defined in the whole parameter plane ex-
cept for |g| = gc. Using a procedure similar to that in
the g = 0 case outlined above, we obtain PK±(k) and
PK′±(k) for both regions |g| < gc and |g| > gc. It is
found that for |g| < gc, the curves of PK(K′)±(k) are

very similar to that in Fig. 2a with PK(K′)±(∞) = ∓ 1
2

and PK(K′)(0) = ∓1 unchanged, yielding C± = ±1. Out
of this region, we obtain C± = 1 for g > gc (see Fig.
2b), or C± = −1 for g < −gc. Figure 3 shows a phase
diagram determined by spin Chern numbers in the g/Vso
versus VR/Vso plane. There are three topologically dis-
tinct phases characterized by C± = ±1, C+ = C− = 1,
and C+ = C− = −1, respectively. From our calculation,
the boundary between the different topological phases is
just the condition of closing the band gap.

To study the edge states in each region, we calculate
the energy spectrum of a long ribbon with zigzag edges
and 240 zigzag chains across the ribbon. For |g| < gc,

corresponding to C± = ±1 region in the phase diagram,
the energy spectrum is shown in Fig. 4a. One can easily
distinguish the edge states from the bulk states. There
is a small energy gap in the edge modes as can be seen
from the inset of Fig. 4a, due to the absence of TR and
inversion symmetries. At a given Fermi level in the band
gap, there exist four different edge states labeled as A, B,
C, and D. Through the analysis of the spatial distribution
of the wave functions, one can find that states A and B
localize near one boundary of the ribbon, while C and D
localize near the other boundary. Take states A and B on
one boundary for example. From the slope of dispersion
curves at points A and B, it is easy to determine that the
two edge states are counterpropagating. We also examine
the spin polarization of the wave functions, state A being
almost fully spin-up polarized, and state B spin-down
polarized. Therefore, in the C± = ±1 region there exist
two counterpropagating edge states with opposite spin
polarizations on a sample edge, which give rise to no net
charge transfer but contribute to a net transport of spin.

The characteristic of the edge states in the C± = ±1
region with g 6= 0 discussed above is very similar to that
for the QSH phase at g = 0 protected by the TR sym-
metry [2]. In particular, they have the same spin Chern
number C± = ±1, indicating that they belong to the
same topological class. As a result, we call it the TR
symmetry-broken QSH phase. For the QSH phase pro-
tected by the TR symmetry, nonmagnetic impurities do
not cause backscattering on each boundary, and the spin
transport in the edge states is dissipationless at zero tem-
perature. In the TR symmetry-broken QSH phase, there
is usually a weak scattering between forward and back-
ward movers, as evidenced by the small energy gap in
the edge state spectrum, leading to a low-dissipation spin
transport.

Similar analysis can be applied to the C± = 1 region,
where the total Chern number of the filled bands sum
upto C = 2, corresponding to a QAH phase [13] with
Hall conductivity σxy = 2e2/h. The related edge state
spectrum is shown in Fig. 4b. It is found that states A
and C localize at one boundary and propagate along the
same −x direction, while states B and D localize at the
other boundary and propagate along the same +x direc-
tion. As a result, in the QAH phase, two edge states at
each boundary lead to spin-up and spin-down currents
propagating along the same direction, yielding a quan-
tized charge conductance. The symmetry-broken QSH
and QAH phases are topologically distinct. The topolog-
ical phase transition between them can occur at |g| = gc
where the band gap just closes.

To further investigate the transition from the TR-
symmetry-broken QSH phase to an ordinary insula-
tor state, we include an alternating sublattice potential
M

∑

i τc
†
i ci into Hamiltonian (1) with τ = ±1 for i on

sublattice A and B, respectively. For g 6= 0 and M 6= 0,
since both the TR and two-fold rotation symmetries are
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FIG. 4: Energy spectrum of a zigzag-edged graphene ribbon.
The parameters are chosen to be Vso = 0.1, VR = 0.05, and
g = 0.03 (a) and g = 0.15 (b). At a given Fermi level in
the band gap there exist four different edge states, which are
labeled as A, B, C, and D.
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FIG. 5: (a) Phase diagram on the g/gc versus M/Vso plane

for gc = 0.5 ∗
√

3
2
Vso, and (b) calculated Chern numbers and

band gap as functions of M/Vso for g = 0.5gc and Vso = 0.1.

lifted, the two Dirac corns atK andK ′ become asymmet-
ric, leading to an indirect minimal band gap ∆E between
the two Dirac points. We find that for a system initially
in the QSH phase of |g| < gc with gc given by Eq. (3), as
|M | is increased, the indirect band gap closes at a smaller
critical value |M | =M− and reopens at a greater critical
value |M | = M+ with M∓ = gc ∓ |g|. The conduction

and valence bands overlap in between, i.e., ∆E = 0 for
M− ≤ |M | ≤ M+. The spin Chern numbers are calcu-
lated from the lattice model by projecting the two valence
bands into two spin sectors, in a similar manner to that
shown above for the continuum model. (For the phase di-
agram Fig. 3, numerical calculations based upon the lat-
tice model have been performed, the obtained result be-
ing found to agree with that from the continuum model.)
The spin Chern numbers are well defined only in the re-
gions |M | < M− and |M | > M+, where ∆E > 0. We find
C± = ±1 for |M | < M− and C± = 0 for |M | > M+. The
phase diagram in the g versus M plane obtained is plot-
ted in Fig. 5a. The calculated C± and minimal band gap
∆E varying along the arrowed dashed line in Fig. 5a are
shown in Fig. 5b as functions of M/Vso. A general fea-
ture of the phase diagram is that the transition between
the QSH phase with C± = ±1 and ordinary insulator
state with C± = 0 is always accompanied by closing of
the band gap, which serves as another signature that the
TR-symmetry-broken QSH phase is topologically non-
trivial and distinct from an ordinary insulator.

This work is supported by the State Key Pro-
gram for Basic Researches of China under Grants Nos.
2009CB929504, 2007CB925104 (LS), 2011CB922103 and
2010CB923400 (DYX), and the National Natural Sci-
ence Foundation of China under Grant Nos. 10874066,
11074110 (LS), 11074109 (DYX), and 60825402 (BGW).
This work is also supported by the U.S. NSF grants
DMR-0906816, DMR-0611562, DMR-0958596 (instru-
ment) and partially by the Princeton MRSEC Grant
DMR-0819860 (DNS).

∗ Electronic address: shengli@nju.edu.cn
† Electronic address: dyxing@nju.edu.cn

[1] X.L. Qi and S.C. Zhang, Physics Today 63, 33 (2010).
[2] C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[3] B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Science

314, 1757 (2006).
[4] M. Kon̈ig, S. Wiedmann, C. Brune, A. Roth, H. Buh-

mann, L.W. Molenkamp, X.L. Qi, and S.C. Zhang, Sci-
ence 318, 766 (2007).

[5] D.N. Sheng, Z.Y. Weng, L. Sheng, and F.D.M. Hal-
dane, Phys. Rev. Lett. 97, 036808 (2006); L. Sheng, D.N.
Sheng, C.S. Ting, and F.D.M. Haldane, Phys. Rev. Lett.
95, 136602 (2005).

[6] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[7] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. (in the press);
cond-mat/10122330.

[8] C.L. Kane, and E.J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

[9] J. Bellissard, A. van Elst, and H. Schulz-Baldes, J. Math.
Phys. 35, 5373 (1994).

[10] E. Prodan, Phys. Rev. B 80, 125327 (2009); E. Prodan,
New J. Phys. 12, 065003 (2010).



5

[11] H.C. Li, L. Sheng, D.N. Sheng, and D.Y. Xing, Phys.
Rev. B 82, 165104(2010).

[12] W.-Y. Shan, H.-Z. Lu, S.-Q. Shen, New J. Phys.
12,043048 (2010); T. Fukui, and Y. Hatsugai, Phys. Rev.
B 75 121403 (2007); A. M. Essin, and J. E. Moore, Phys.
Rev. B 76, 165307 (2007); B. Zhou, H.-Z. Lu, , R.-L. Chu,

S.-Q. Shen, and Q. Niu, Phys. Rev. Lett. 101, 246807
(2008).

[13] Z. Qiao, S.A. Yang, W. Feng, W.K. Tse, J. Ding, Y. Yao,
J. Wang, and Q. Niu, Phys. Rev. B 82, 161414(R)(2010).


