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Defects provide important insight into the complex electronic and magnetic structure of heavy-
fermion materials by inducing qualitatively different real-space perturbations in the electronic and
magnetic correlations of the system. These perturbations possess direct experimental signatures in
the local density of states, such as an impurity bound state, and the non-local spin susceptibility.
Moreover, highly non-linear quantum interference between defect-induced perturbations can drive
the system through a first order phase transition to a novel inhomogeneous ground state.
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Heavy-fermion materials exhibit a plethora of puzzling
phenomena which are believed to arise from the com-
petition [1] between Kondo screening [2] and antiferro-
magnetic ordering. Of particular interest are the non-
Fermi-liquid (NFL) properties [3] observed in the quan-
tum critical region of the heavy fermion phase diagram,
whose microscopic origin is still a topic of debate [5–9].
Recent groundbreaking scanning tunneling spectroscopy
(STS) experiments [10–12] have shed light on this de-
bate by providing insight into the electronic and mag-
netic structure of heavy fermion materials, in particular
through quasi-particle interference (QPI) spectroscopy
[10] which utilizes the effects of defects. These results
raise the interesting question of whether, similar to the
high-temperature superconductors [13], defects can be
employed in heavy fermion materials to disentangle and
spatially resolve their electronic and magnetic structure.

In this Letter, we demonstrate that defects in heavy-
fermion materials provide an unprecedented opportunity
to differentiate (in real space) between electronic corre-
lations arising from Kondo screening, and antiferromag-
netic correlations between the magnetic moments. In
particular, defects [14, 15] induce perturbations in the
electronic and magnetic structure that exhibit charac-
teristically different spatial patterns and possess experi-
mental signatures in the local density of states (LDOS) of
the conduction band, and the non-local f -electron spin
susceptibility, respectively. The spatial extent of these
perturbations grows with the strength of the magnetic
interactions, and thus directly reflects the degree of cor-
relations. Moreover, non-magnetic impurities can induce
an impurity bound state, in contrast to defects in the
form of missing magnetic (Kondo) atoms. Finally, we
show that the strongly correlated nature of these mate-
rials manifests itself in highly non-linear quantum inter-
ference effects between defects that can drive the system
through a first-order phase transition to a novel inho-
mogeneous ground state. Our findings demonstrate that
defects provide unique insight into the competing inter-
actions in heavy-fermion materials, thus presenting a new
approach to solving the complex heavy-fermion problem.

The starting point for our study is the Kondo Heisen-

berg Hamiltonian [6–9]

H = −t
∑

〈r,r′〉,α

c†
r,αcr′,α − µ

∑

r,α

c†
r,αcr,α

+J
∑

r,α,β

SK
r
· c†

rασαβcr,β +
∑

r,r′

Ir,r′S
K
r
· SK

r′
. (1)

With nearest neighbor hopping t = 0.5E0 and chemical
potential µ = −1.809E0 (E0 is an overall energy scale),
one obtains a Fermi wavelength λc

F = 10a0 (a0 is the lat-
tice constant) of the (decoupled) conduction band with
electron density nc = 0.062. c†

r,α (cr,α) creates (annihi-
lates) a conduction electron with spin α at site r. J > 0 is
the Kondo coupling, and SK

r is the S = 1/2 spin operator
of the magnetic (Kondo) atom. Ir,r′ is the antiferromag-
netic coupling between nearest-neighbor Kondo atoms.
Its microscopic origin, direct exchange [7, 8] or RKKY-
interaction [1, 6, 9], is in general not known. However,
since it is irrelevant for the purpose of this study, we
consider I and J to be independent parameters, in ac-
cordance with earlier work [7, 8]. Finally, the conduction
band and magnetic atoms possess identical square lat-
tices with r representing the location of a Kondo atom
and the conduction site that it couples to.
In the large-N approach [4, 16–18], SK

r is represented
by pseudo-fermion operators, f †

r,m, fr,m, that obey the

constraint n̂f (r) =
∑

m=1..N f †
r,mfr,m = 1 for all r with

N = 2 being the number of fermionic flavors for a spin
operator with S = 1/2. In order to decouple the resulting
Hamiltonian, we introduce the mean fields

s(r) =
J

2

∑

α

〈f †
r,αcr,α〉 ; χ(r, r′) =

Ir,r′

2

∑

α

〈f †
r,αfr′,α〉 .

(2)
Here, a non-zero local hybridization s(r) between the
conduction electron and the magnetic f -electron states
describes the screening of a magnetic moment, and
the magnetic bond variable χ(r, r′) represents the
antiferromagnetic (spin-liquid) correlations [7, 8] be-
tween nearest-neighbor moments. By adding the term∑

r,α εf (r)f
†
r,αfr,α to the Hamiltonian, the constraint

〈n̂f (r)〉 = 1 can be enforced through the on-site en-
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FIG. 1: (color online) Kondo hole system for J = E0 and
I/J = 0.001. Contour plots of (a) ∆s, (b) ∆nc, and (c)
∆χ(r, r′) [shown at (r + r

′)/2]. (d) Large Fermi surface
(black) of the unperturbed Kondo lattice (with s = 0.0485E0,
χ = 0.000166E0 and εf = 0.000123E0) arising from the hy-
bridization of the f -electron and conduction bands and small
(red) Fermi surface of the unhybridized conduction band.

ergy εf(r) [19, 20]. The resulting quadratic Hamilto-
nian can be diagonalized in real space [assuming peri-
odic boundary conditions for an (M × M) lattice], al-
lowing a self-consistent calculation of s(r), χ(r, r′), and
εf (r). We study systems well inside the Kondo screened
regime where s(r) 6= 0 for all sites and fluctuations cor-
rections beyond the mean-field level are expected to be
weak [8, 16]. Moreover, a missing Kondo atom at site R,
a Kondo hole, is described by removing the spin operator
SK
R

from the above Hamiltonian [19]. Similarly, replacing
a magnetic atom by a non-magnetic one corresponds to
removing SK

R
from the Hamiltonian and adding the scat-

tering term U0

∑
α c†

R,αcR,α. We consider lattices with
M = 41 since the mean-field parameters change only
weakly (≤ 0.5%) for M > 41. For a clean system, our
formalism reproduces the mean-field results of the lattice
Kondo-Heisenberg Hamiltonian [7, 8, 17].
We begin by considering the case of a Kondo hole lo-

cated at R = (0, 0). In Figs. 1(a) and 1(b) we present
spatial plots of the relative change in the hybridization,
∆s, and the conduction electron density, ∆nc, respec-
tively, between the Kondo lattice with and without a
hole. Both quantities exhibit similar spatial oscillations,
whose isotropy and wavelength of λc

F /2 imply that they
are determined by the Fermi surface of the unhybridized
conduction band [Fig. 1(d)]. The oscillations in ∆s and
∆nc decay exponentially and change only very weakly
with I/J . However, their decay length, ξs, increases ap-
proximately linearly with s−1 of the clean system [21]. In
contrast, the spatial oscillations of ∆χ shown in Fig. 1(c)
extend predominantly along the lattice diagonal. They
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FIG. 2: (color online) (a) Nc(r, ω) for the unperturbed Kondo
lattice, and in the Kondo hole system at R = (0, 0), and
r
′ = (1, 1) where ∆s(r′) > 0. (b) The non-local f -electron
spin susceptibility, Γf (r, r

′, ω) between nearest neighbor sites
in the unperturbed Kondo lattice, and in the Kondo hole
system between sites r = (1, 0) and r

′ = (1, 1) with ∆χ > 0
and between sites r = (1, 1) and r

′ = (1, 2) with ∆χ < 0.

reflect the strongly anisotropic Fermi surface of the hy-
bridized system [see Fig. 1(d)], which possesses a large
degree of nesting and a Fermi velocity, v1, along the lat-
tice diagonal which is about 10 times larger than that
along the bond direction, v2. Thus, the oscillations of
∆χ possess a wavelength of λh

F /2 =
√
2a0, with λh

F be-
ing the Fermi wavelength of the hybridized Fermi surface
along the diagonal. The envelope of these oscillations de-
cays exponentially away from the Kondo hole with a de-
cay length, ξχ, that increases approximately linearly with
I/J [21]. This dependence is expected since a Kondo hole
can be mapped onto a localized state outside the conduc-
tion band whose effects on ∆χ or ∆s necessarily decay
exponentially. Moreover, since the amplitude and spatial
extent of ∆χ increase with I/J , ∆χ is a direct measure
for the strength of the magnetic interaction. A weaker re-
flection of these anisotropic oscillations can also be found
in ∆s, demonstrating the coupling between the system’s
electronic and magnetic degrees of freedom. Finally, we
note that the relation between the spatial structure of ∆s
and ∆χ and the form of the uncoupled and hybridized
Fermi surfaces, respectively, holds for all parameters of
nc and J that we have considered so far [21].

The spatial perturbations in s(r) possess a direct spec-
troscopic signature in the LDOS of the conduction band,
Nc(r, ω), which can be probed via STS [22, 23]. Nc(r, ω)
for an unperturbed Kondo lattice [see Fig. 2(a)] exhibits
a hybridization gap which was recently observed in STS
experiments [10–12]. The peak in the LDOS at the low-
energy site of the gap arises from the van Hove singularity
of the hybridized Fermi sea [green arrow in Fig. 1(d)]. In
comparison, the LDOS at the site of the Kondo hole,
R, shows a significant redistribution of spectral weight
from negative to positive energies. To understand this
effect, we note that the screening of a single Kondo
atom leads to an increase in the local electron density,
nc(r) =

∫∞

−∞
dω nF (ω)Nc(r, ω), with nF being the Fermi

function, and hence a shift of spectral weight in Nc(r, ω)
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FIG. 3: Kondo lattice with a non-magnetic impurity at R =
(0, 0) and U0 = −1.0E0, I/J = 0.001. Contour plot of (a) ∆s,
(b) ∆nc, and (c) ∆χ. (d) Nc(R, ω) showing the existence
of impurity bound states. Contour plot of Nc(r, ω) at (e)
ω = ΩB , and (f) outside the hybridization gap at ω = 0.02E0.

from positive to negative energies. A Kondo hole leads
to the opposite effect with a decrease in nc(R), and the
corresponding changes in Nc shown in Fig. 2(a). More-
over, since for a site with ∆s(r) > 0 one has ∆nc(r) > 0
[cf. Figs. 1(a) and (b)], the concomitant redistribution of
spectral weight in Nc(r, ω) is a direct measure of ∆s(r).
The form of Nc(r

′, ω) at the next-nearest neighbor site
of the Kondo hole [see Fig. 2(a)] with ∆s(r′) > 0, ex-
hibits an increase in spectral weight at negative frequen-
cies, and hence confirms this conclusion. Note that the
(positive) spatial correlation between ∆s and ∆nc for
nc < 1 [Figs. 1(a),(b)] turns into an anti-correlation for
nc > 1 [22]. Moreover, the spatial oscillations in χ(r, r′)
possess a direct spectroscopic signature in the non-local
f -electron spin susceptibility, Γf (r, r

′, ω). In particular,
for nearest-neighbor sites, r, r’ with ∆χ > 0 (∆χ < 0),
|ImΓf | is enhanced (suppressed) in comparison to the un-
perturbed Kondo lattice [see Fig. 2(b)]. These effects are
expected to be observable in the near future [24, 25] via
nuclear magnetic resonance techniques [26] or nanoscale
magnetic resonance spectroscopy [27].
The replacement of a Kondo atom at R = (0, 0) by

a non-magnetic impurity with an attractive scattering
potential, U0 < 0, leads to a form of ∆s, ∆nc, and

∆χ [Figs. 3(a)-(c)] that possess distinct differences to
those induced by a Kondo hole. Specifically, it causes
a sign change of ∆nc, i.e., a site with ∆nc < 0 for
the Kondo hole case, now has ∆nc > 0 [cf. Figs. 1(b)
and 3(a)]. Since the same change also occurs in ∆s and
∆χ, it follows that the electronic and magnetic correla-
tions are strongly affected by the spatial redistribution
of nc. When the magnitude of U0 < 0 exceeds a thresh-
old value, |Uc|, an impurity bound state is formed around
the impurity. Its spectroscopic signature is a sharp peak
in Nc(r, ω) inside the hybridization gap [see Fig. 3(d)].
With increasing |U0|, the bound state first emerges at the
high energy side of the hybridization gap and then moves
to lower energies [see Fig. 3(d)]. The bound state is spa-
tially isotropic, and decays exponentially away from the
impurity with a decay length, ξD ≈ 0.65a0 [see Fig. 3(e)].
This small value of ξD demonstrates that the bound state
is predominantly formed by f -electrons since a state aris-
ing from conduction electrons would have ξD & 60a0
due to the significantly larger vF . The f -electron na-
ture of the bound state is also expected since with in-
creasing |U0|, it is pulled into the hybridization gap from
states located at the gap edges, which are f -electron like
in nature [22]. It also directly reflects the strong cor-
relations between the light and heavy bands since it is
induced by impurity scattering of conduction electrons
only. In contrast, the spatial oscillations of Nc(r, ω) for
frequencies outside the hybridization gap are delocalized
[see Fig. 3(f)], and hence arise from conduction electrons.
The existence of a non-zero Uc, whose sign and magni-
tude are determined by the particle-hole asymmetry of
the conduction band (here, Uc = −0.62E0), might ex-
plain the disparate physical properties of heavy-fermion
materials containing different types of non-magnetic im-
purities [14]. Moreover, for a system with a soft hy-
bridization gap [22, 28], the bound state transforms into
a resonant state, and Uc becomes a crossover scale [21].
Finally, our description of a non-magnetic impurity, and
the nature of the induced bound state, differ qualitatively
from previous work [29] where the impurity was modeled
as a Kondo atom with εf (R) → ∞ but s(R) 6= 0. Within
our theoretical model, these assumptions are inconsis-
tent, since εf (R) → ∞ necessarily implies s(R) → 0.

Note added: after the submission of this Letter,
STS experiments by Hamidian et al. [30] on Th-doped
URu2Si2 confirmed the predicted existence of spatial hy-
bridization oscillations [with a wave-vector twice that of
the (unhybridized) conduction band, see Fig.1(a)], and of
an impurity bound state [29]. The experimental confir-
mation of our predictions represents a significant advance
towards understanding the complex electronic and mag-
netic structure of heavy fermion materials in general, and
of disorder effects in particular [14, 15].

The strongly correlated nature of the Kondo lattice
leads to highly non-linear quantum interference of the
spatial perturbations emanating from adjacent Kondo
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holes. For a periodic array of Kondo holes embedded in
the Kondo lattice, this non-linearity leads to a first order
phase transition with increasing I into a novel inhomo-
geneous ground state. The kink in the free energy at Ic,
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FIG. 4: (a) Free energy of the unperturbed Kondo lattice and
Kondo hole array as a function of I/J . Contour plots of (b)
∆s, (c) ∆χ, and (d) ∆nc for one unit cell of the Kondo hole
array and I/J = 0.0013 > Ic/J=0.0011.

shown in Fig. 4(a) demonstrates the first order nature
of this transition (here, we consider a square lattice of
Kondo holes separated by aH = 41a0). The phase tran-
sition occurs, when the spatial perturbations in χ, whose
spatial extent increase with I, reach the corners of the
unit cell in a Kondo hole array, where they interfere with
each other non-linearly and drive the system through a
first order transition. The spatial patterns of ∆s, ∆χ,
and ∆nc for I > Ic shown in Figs. 4(b)-(d) are strikingly
different from the ones for I < Ic (see Fig. 1), and re-
flect the highly inhomogeneous nature of this state. The
similarity of the patterns for I > Ic and the large am-
plitude of ∆nc, suggest that while the phase transition
is driven by quantum interference between perturbations
in χ, the resulting real space patterns are determined by
the redistributed conduction electron density.
In summary, we demonstrated that defects induce

qualitatively different spatial patterns of ∆s and ∆χ,
which provide important insight into the complex elec-
tronic and magnetic structure of heavy-fermion materi-
als. Moreover, non-magnetic impurities can induce qual-
itatively different effects from those of Kondo holes, such
as an impurity bound state. Finally, strong correlations
effects give rise to highly non-linear quantum interference
that can drive the system through a first order phase
transition to a highly inhomogeneous ground state.
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103, 206402 (2009); P. Wölfle, Y. Dubi, and A.V. Bal-
atsky, Phys. Rev. Lett. 105, 246401 (2010).

[24] H. Alloul, private communication.
[25] P.C. Hammel, private communication.
[26] H. Alloul et al., Rev. Mod. Phys. 81, 45 (2009).
[27] P.C. Hammel, Nature 458, 844 (2009).
[28] T. Yuan, J. Figgins, and D.K. Morr, preprint,

arXiv:1101.2636.
[29] R. Freytag, and J Keller, Z. Phys. B - Condensed Matter

80,241 (1990); R. Sollie, and P. Schlottmann, J.Appl.
Phys. 69, 5478 (1991).

[30] M.H. Hamidian et al., preprint, submitted (2011).


