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We analyze data from confocal microscopy experiments of a colloidal suspension to validate pre-
dictions of rapid sporadic events responsible for structural relaxation in a glassy sample. The
trajectories of several thousand colloidal particles are analyzed, confirming the existence of such
rapid events responsible for the structural relaxation of significant regions of the sample, and com-
plementing prior observations of dynamical heterogeneity. Thus, our results provide the first direct
experimental verification of the emergence of relatively compact clusters of mobility which allow the
dynamics to transition between the large periods of local confinement within its potential energy
surface, in good agreement with the picture envisioned long ago by Adam and Gibbs and Goldstein.

PACS numbers: 61.20.Ne (Structure of simple liquids), 82.70.Dd (Colloids)

A complete understanding of the molecular underpin-
nings of glassy relaxation (the dramatic dynamical slow-
ing down that arises when a liquid is rapidly cooled be-
low its melting point avoiding crystallization), remains
a major challenge in condensed matter physics [1–6].
As long ago as 1965, Adam and Gibbs [7] proposed an
appealing picture that accounted for this enormous in-
crease in relaxation timescales within a narrow temper-
ature window. They suggested that the dynamics of a
glass-forming supercooled liquid proceeds by means of
cooperatively rearranging regions (CRR) whose size and
relaxation timescale grow considerably as temperature is
lowered, giving the decrease in configurational entropy of
the system [1–7]. This description suggests that a super-
cooled liquid at low temperatures can be decomposed in
independently relaxing compact subsystems (the CRR)
whose molecules attempt to change configuration, but
which can only undergo a transition when they rearrange
in a concerted manner. Thus each of them (in the words
of Adam and Gibbs [7]) surmounts, essentially simultane-
ously, the individual barrier restricting its arrangement.
In this picture, it is expected that each region of a su-
percooled liquid should be practically “frozen” in a given
portion of configuration space for large times (larger as
temperature decreases given the growing size of the re-
gions and thus of the number of molecules involved in
the rearrangement) and then will relax (asynchronously
and independently of other regions) by having a burst of
mobility characterized by the sharp emergence of a com-
pact cluster of mobile particles [7, 8]. Hence, at any given
time the system would present dynamics that would vary
significantly from one region to another: the dynamics
should then be heterogeneous in space [1–6].

The validity of such a heterogeneous scenario has
been confirmed both experimentally and computation-
ally, since the existence of dynamical heterogeneities [9–

17] has been detected. Simulations of model glassy sys-
tems have shown that the more mobile particles are
not homogeneously distributed in space but arranged in
(non-compact) clusters [10]. The time scale for the mo-
tion of these more mobile particles is t∗, a timescale close
to the structural α-relaxation time, τα; τα is calculated
as the time scale when the or self-intermediate scattering
function has decayed to 1/e. These results have also re-
ceived experimental support in colloidal suspensions (ex-
perimental models for glassy relaxation) [12, 13].

More recently [18], computational studies have deter-
mined that within any dynamically heterogeneous region
of the system, the relaxation is not gradual but also het-
erogeneous in time, since the α relaxation is almost ex-
clusively governed by rapid sporadic events character-
ized by the emergence of relatively compact clusters of
mobile particles (termed as “democratic” clusters or d-
clusters [18]). These events trigger transitions between
local metabasins (MB, basins of attraction of the poten-
tial energy surface comprising a group of similar closely-
related structures or local minima [3, 18–20] where the
system is confined for long times). These cooperatively
relaxing units or d-clusters have been identified in molec-
ular dynamics simulations of different glassy systems like
a binary Lennard-Jones [18] system, supercooled water
[21] and amorphous silica [22] and represent natural can-
didates for the CRR proposed by Adam and Gibbs [7]. A
recent inhomogeneous mode-coupling theory of dynam-
ical heterogeneity has related them to the (fractal) ge-
ometrical structures carrying the dynamical correlations
at timescales commensurable with that of the α relax-
ation (more compact than the open-like structures ex-
pected at much shorter timescales) [23]. Additionally, a
recent experimental and computational work in a glassy
polymer provided indirect experimental support to the
MB-MB transitions and d-clusters [24]. However, exper-
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iments with molecular glasses lack the level of resolution
necessary to directly observe them and thus, no direct
experimental information has verified the existence of
such events up to date. Thus, in this work we study
a colloidal suspension (an excellent experimental model
of glassy systems with particles big enough to be directly
observed by confocal microscopy) to provide for the first
time a direct experimental proof that detailed tracking
of particle motions is indeed able to detect the aforemen-
tioned kind of events.

We analyze the data of Refs. [13, 14], taken from
confocal microscopy experiments of colloidal samples.
The colloids are sterically stabilized colloidal poly-
(methylmethacrylate) with diameter d = 2.36 µm and
a polydispersity of ∼ 5%. They are dyed with rho-
damine and suspended in a density-matching and index-
matching solvent mixture of cycloheptylbromide and de-
calin. In this solvent, the colloidal particles possess a
slight charge, and exhibit a glass transition at a volume
fraction φ ≈ 0.58. A confocal microscope rapidly ac-
quires three-dimensional images once every 10−20 s. The
images are post-processed to locate particle centers with
an accuracy of 0.03 µm in x and y and 0.05 µm in z. Due
to the difficulty of identifying particles near the edges of
the images, the useful data are within a region of size
Lx = 67 µm, Ly = 62 µm, and Lz = 9 µm, correspond-
ing to several thousand particles. The volume fractions
are determined by counting the particles within a subvol-
ume, and are known to within ±0.01 with the uncertainty
mainly due to the uncertainty of the particle diameter
(±0.01 µm). For further details, see Refs. [13, 14].

Since at any given time a large system would consist of
several different CRR, we divided the experimental sys-
tem into 6 subsystems or portions ξ, each one with an
increasing number of colloidal particles N(ξ) (see the in-
set in Fig. 1(a)). All portions have the same depth Lz
and center (Lx/2, Ly/2, Lz/2). Portion ξ comprises the
particles that were initially (t = 0) [26] within the bound-
aries of the corresponding rectangular prism of length
Lx · (ξ/6) and height Ly · (ξ/6). For φ = 0.56, the num-
ber of particles within each portion is: N(ξ = 1) = 77,
N(2) = 310, N(3) = 703, N(4) = 1255, N(5) = 1962
and N(6) = 2759 particles. We shall present results for
φ = 0.56 unless otherwise indicated, but similar results
were obtained for φ = 0.53, φ = 0.52 and φ = 0.46.

To identify MBs we employed the following “distance
matrix” (∆2) function [25]:

∆2(t′, t′′) =
1

N

N∑
i=1

|ri(t′)− ri(t
′′)|2 , (1)

where ri(t) is the position of particle i at time t. ∆2(t′, t′′)
gives the system normalized squared displacement in the
time interval (t′, t′′).

A plot of ∆2 as a function of t′ and t′′ can be seen in

FIG. 1: (a) Distance matrix ∆2(t′, t′′) for portion ξ = 1. The
gray level corresponds to values of ∆2(t′, t′′) that are given to
the right of the figure. Units are µm2. Inset: for the analysis,
we followed the colloidal particles that were initially (t = 0)
within the boundaries of rectangular prisms: ξ = 6 (blue, the
complete system), magenta, green, yellow, orange and ξ = 1
(red, smallest region) respectively. All ξ have the same depth
Lz. Colloidal particles are not shown. (b) Averaged squared
displacement δ2(t, θ) for all ξ. Each series (analysis over each
ξ) is shifted by 0.5 µm2 respect the former one. For compar-
ison we included the corresponding average values of δ2(t, θ)
over all times, 〈δ2(t, θ)〉 (dashed colored lines, also shifted).
The value of θ is 72 s. Inset: γ = |δ2ξ(5706 s, θ)−〈δ2(t, θ)〉ξ|/σξ
vs ξ, where σ is the standard deviation in δ2 and 5706 s is the
time of the largest average squared displacement. Subscript ξ
means that the function was evaluated for molecules in ξ. A
maximum for ξ = 2 is observed. (c) The function m(t, θ) for
ξ = 1 and its average value over all times (dashed black line).

Fig. 1(a) for φ = 0.56. These results are typical for all
studied φ (as an example, in Fig. 2 we show an equiv-
alent plot for φ = 0.46). The darker the shading, the
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FIG. 2: Similar to Fig. 1(a), but for φ = 0.46 and for a
(rectangular prism) region of approximately the size of ξ = 1.
At this φ, N(1) = 44 and t∗ = 300 s.

smaller the distance between the configurations at times
t′ and t′′. From this figure we can learn that the dy-
namics of this portion is quite heterogeneous in time in
that it stays for a significant time relatively close to one
region in configuration space, dark square-like regions,
before it finds a pathway to a new region. The value of
∆2(t′, t′′) within a MB is around 0.02 µm2 as compared
to values much larger than 0.04 µm2 if the system is in
different MBs (see legend on the right of the figure). If
there were no MBs, the plot would show a dark shadow
at the diagonal t′′ = t′ and a gradual decrease in shading
perpendicular to it, as it would be seen at low φ (simi-
larly to the case of structural glasses at high temperature
[18]) and/or large systems; compare Fig. 1(a) (φ = 0.56)
to Fig. 2 (φ = 0.46). These figures demonstrate that the
system spends large amounts of time exploring the lo-
cal MB, and only occasionally moves on to a neighboring
MB. Indeed, we can see that this trajectory resides within
a MB for times much larger than t∗ ≈ 1000 s, the max-
imum in the non-Gaussian parameter α2(t) [13, 15]. We
also point out that from Fig. 1(a) it is evident that the
time for a MB-MB transition is quite short, on the order
of 70 s, which thus corresponds to about 7% of t∗. In the
lower volume-fraction data of Fig. 2, the transitions are
also rapid although slightly less distinct. The time scale
for the displacements we consider, θ = 72 s, corresponds
to the cage-trapping plateau in the mean square displace-
ment 〈r(t)2〉. The time within a MB, t∗ (or larger), cor-
responds to the start of the upturn of 〈r(t)2〉.

In Fig. 1(b) we also show, for all ξ and same time
interval, δ2(t, θ), the averaged squared displacement of
the particles within a time interval θ (solid curves). This

FIG. 3: Radial probability distribution functions P (r) for ξ =
2 and θ = 72 s. The black curve is 4πr2Gs(r, θ), the self-part
of the van Hove function, and the gold curve is a Gaussian
with the same value of 〈r2(θ)〉. The crossing point of these
two curves at r ≈ 0.23 µm is used as a threshold to identify
the democratically moving particles. The blue and magenta

curves are the average of 4πr2Ĝs(r, t, t+θ) for different values
of t in which the system is inside a MB (see text for details),
and a transition (TR) from t = 5706 s to t+ θ.

function is defined as

δ2(t, θ) = ∆2(t, t+ θ) =
1

N

N∑
i=1

|ri(t)− ri(t+ θ)|2 .(2)

A comparison of δ2 with the distance matrix shows
that δ2 is showing pronounced peaks exactly when the
system leaves a MB. Thus we see that changing the MB is
indeed associated with a rapid significant particle motion
as measured by δ2. Also included are the average values
of δ2(t, θ) for all ξ over all times, 〈δ2(t, θ)〉, represented
by dashed lines. It is clear that the larger systems have
a lower relation between fluctuations in δ2 at the MB
transitions and its average value: This ratio in Fig. 1(b)
for the peak at time t = 5706 s is maximum at ξ = 2
(see inset), thus providing an indication of the size of the
MB-MB transition event.

To understand the motion of the particles when the
system leaves a MB we have calculated the function
4πr2Ĝs(r, t, t + θ), the distribution of displacement r
of the particles for a given time difference θ = 72 s.
(Note that the average of 4πr2Ĝs(r, t, t + θ) over t gives
4πr2Gs(r, θ), the self-part of the van Hove function). An
average of this distribution is shown in Fig. 3 (blue curve)
for different values t within a MB [t/s = 378, 2898, 3474,
4626, 6210 and 7506 for the case of Fig. 1(a)]. Also in-
cluded is the self-part of the van Hove function (black
curve) and we can see that both curves are (within the
noise of the data) identical, thus showing that in a MB
the system moves basically the same as on average. We
also show the distribution (magenta curve) for t = 5706 s
in which the system is about to leave a MB. For this value
of t the distribution is clearly displaced to the right with
respect to 4πr2Gs(r, θ), showing that in this time regime
the motion of the system is much faster than on average.
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FIG. 4: Position of democratic particles for: (left) a MB-MB
transition from t = 5706 s to t + θ and (right) t = 7290 s to
t+ θ inside a MB. The data are for ξ = 2, θ = 72 s, φ = 0.56.

Thus we can conclude that the peaks of the δ2 are not
due to the presence of a few fast moving particles, but
instead to a “democratic” movement of many particles.
That is, rather than being 5-8 % of the particles (as con-
sidered previously [10, 13–15]), rearrangements involve
as many as 25 % of the particles in a local region, as
suggested by Figs. 1(c) and 4(left); and given that the
whole displacement distribution is shifted (Fig. 3), likely
even the other 75 % participate in a fashion as well.

To further demonstrate that this is indeed the case
and to explore the spatial distribution of mobility, we
have defined as “democratic” all those particles that
in the time interval θ = 72 s have moved more than
rth = 0.23 µm (a value very close to 0.25 µm, the size
of the cage formed by particles surrounding a single par-
ticle [14]), and denote the fraction of such particles by
m(t, θ). We take the value of rth as the second inter-
section between 4πr2Gs(r, θ) and a Gaussian (see Fig. 4,
gold curve) with the same value of 〈r2(θ)〉 (however, other
threshold choices yield similar results). In Fig. 1(c) we
have included the fraction m of democratic particles for
ξ = 1 as a function of time (vertical bars). A comparison
of this data with δ2 shows that m is indeed large when-
ever δ2 increases rapidly. This fraction is on the order of
20 % of the particles and thus significantly larger than
one would expect from 4πGs(r, θ) if one integrates this
distribution from rth to infinity and which gives 0.051.
In turn, Fig. 4 (left) shows the 3D location of the demo-
cratic particles involved in a typical MB-MB transition
for ξ = 2 (for the event at t = 5706 s in Fig. 1 but other
cases display similar results). We can see that the par-
ticles are not homogeneously distributed in space (as is
indeed the case in Fig. 4 (right) for t = 7290 s inside a
MB) but arranged in a relatively compact cluster.

In summary, the experimental results shown in this
work for a colloidal system provide direct validation to
the picture of glassy relaxation previously shown by MD
simulations of several glassy systems [18, 21, 22, 24]:
The dynamics spends large times confined within a
metabasin, interspersed with rapid bursts in mobility
characterized by the emergence of relatively compact
clusters of democratic particles which trigger the struc-

tural or α relaxation. While the experimental parti-
cles are not perfect hard spheres, the major contribu-
tion to the free energy landscape is expected to come
not from potential energy but from entropic considera-
tions. Metabasins correspond to regions of phase space
with many possible microstates, while the saddles be-
tween them involve regions with fewer ones (this might
correspond to particles locally moving close together to
allow another particle to rearrange, which would be an
unlikely microstate but which would allow a metabasin
transition). Systems closer to the glass transition have
more distinct metabasin transitions that occur more in-
frequently (compare Fig. 1(a) to Fig. 2). Thus, this be-
havior conforms to the scenario put forth long time ago
by Adam and Gibbs [7] and Goldstein [8].
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