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Mean-field Bloch bands of a Bose-Einstein condensate in a honeycomb optical lattice are com-
puted. We find that the topological structure of the Bloch bands at the Dirac point is changed
completely by atomic interaction of arbitrary small strength: the Dirac point is extended into a
closed curve and an intersecting tube structure arises around the original Dirac point. These tubed
Bloch bands are caused by the superfluidity of the system. Furthermore, they imply the inadequacy
of the tight-binding model to describe an interacting Boson system around the Dirac point and the
breakdown of adiabaticity by interaction of arbitrary small strength.
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Inspired by the exciting physics in graphene[1–4], there
have been increasing efforts to study ultracold atoms in
a honeycomb optical lattice [5–11]. The primary reason
is that these ultracold atom systems offer more control-
ling flexibilities over graphene[12, 13]. For example, with
this hexagonal ultracold atom system, one can readily
change the lattice strength, tune the atomic scattering
strength with Feshbach resonance, and load either bosons
or fermions or even a mixture of bosons and fermions
in the lattice. There have already been efforts to study
conical diffraction[6–8] and observe quantum phases with
ultracold bosons in a honeycomb lattice[9]. This control-
ling flexibility will not only offer deeper insight into the
graphene properties but also open up windows for physics
beyond graphene.

In this Letter we provide an insight into the interplay
between superfluidity and Dirac dynamics by studying a
Bose-Einstein condensate (BEC) in a honeycomb optical
lattice. To showcase the interplay, we compute the lowest
Bloch bands for this BEC system. We find that the topol-
ogy of the Bloch bands around the Dirac point is com-
pletely altered by arbitrary small atomic interaction: an
intersecting tube structure appears and the Dirac point
is turned into a closed curve. We show that the topolog-
ical change can be viewed as a permanent fingerprint left
in the Bloch bands by superfluidity. As the interaction
does not change the Dirac point structure in the tight-
binding model, this topological change suggests that the
tight-binding model is insufficient to describe the bosonic
dynamics in a honeycomb lattice no matter how deep the
lattice is. At the same time, these tubed bands imply the
breakdown of adiabaticity by arbitrary small atomic in-
teraction. A feasible experimental scheme is suggested
to observe this phenomenon.

The honeycomb optical lattice can be experimentally
realized by three interfering traveling laser beams[14, 15],
and is described mathematically by

V (r) = V0

[

cos(b1 ·r)+cos(b2 ·r)+cos((b1+b2)·r)
]

, (1)

FIG. 1: (color online) (a) Contour map of the hexagonal po-
tential in Eq.(1). The potential well is represented in red and
the barrier in blue. The unit vectors are marked as a1 and
a2. (b) Unit cell in the reciprocal space with unit vectors b1,
b2 and the high symmetry points Γ, M and K.

where the reciprocal unit vectors b1 = 2π(
√
3, 1)/(3a)

and b2 = 2π(−
√
3, 1)/(3a) with a = 2λL/3

√
3. λL is

the wavelength of the laser beams. We are interested in
the superfluid regime, where the BEC system can be well
described by the Gross-Pitaevskii (GP) equation

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + V (r)ψ +

4π~2as
m

|ψ|2 ψ. (2)

with m the mass of particle and as the scattering length.
For numerical computation, the above equation is made
dimensionless by normalizing the wave function and
choosing 6ER as energy unit with ER = ~

2k2L/2m,
ma2/π2

~ as the time unit, and
√
3a/2π as the length

unit. The scaled nonlinearity and potential strength are
denoted as c and v, respectively.
We compute the Bloch wave solutions of the GP equa-

tion, which are of the form ψk(r) =
∑

m,n cmne
i(k+Gmn)·r

with Gmn = mb1 + nb2, and the corresponding nonlin-
ear Bloch bands. The bands along the high-symmetry
point are plotted in Fig.2. Compared to the linear bands
in Fig.2(a), we see that the nonlinear bands in (b) have
a similar overall structure. However, the part around
the Dirac point appears to be modified by nonlinearity.
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FIG. 2: Bloch bands along the high symmetry points. (a) The
linear case. c = 0, v = 0.1. D marks the Dirac point at point
K. (b)The nonlinear case. c = 0.1, v = 0.1. (c) The enlarged
rectangle part in (b). There appear two additional crossing
points D1 and D2 while the linear Dirac point D is shifted
away from K. (d) The band structure along the direction
represented by the dashed line in Fig.1(b).

When it is enlarged, we find in (c) that the two linear
bands have split into four bands. As a result, two more
additional crossing points D1 and D2 appear while the
Dirac crossing D is shifted away from point K. This
feature is also clear in (d), where the Bloch band along
the direction 30◦ off the K-M axis is plotted. We have
also plotted the nonlinear Bloch band near point M in
Fig.4(b) where we see a loop structure, very similar to the
BEC Bloch bands in one dimensional optical lattice[16–
18]. �� �� �� ����� ��������� ���� ����� ��� �� ��
FIG. 3: (color) (a) The lowest nonlinear Bloch bands around
point K. They consist of three intersecting “tubes”, which
are sandwiched by two Dirac cones. (b) Three intersecting
“tubes”, which are aligned along the three K-M axes; (c) one
of three “tubes”, whose cross-section area increases monoton-
ically from M to K; (d) the cross-section of two intersecting
“tubes”. The white dots are D1 and D2 points in Fig.2(c)
while the green dots indicate a closed curve where the D point
in Fig.2(c) belongs. v = 0.1, c = 0.1.

The full BEC Bloch bands near point K are plotted in
Fig.3(a). The complicated Bloch bands consist of three
“tubes”, which intersect at point K (see Fig.3(b)) and
are sandwiched by two Dirac cones. One of the tubes
is shown in Fig.3(c): it lies along the M-K direction
and it has a wedged cross-section with an area increasing
monotonically from M to K . Fig.3(d) shows how two
tubes intersect. The two white dots mark the top and
bottom tips of this intersection and correspond to D1

and D2 points in Fig.2(c,d). The green dots indicate part
of a closed curve, which results from the intersection of
the three tubes; the shifted Dirac point D in Fig.2(c,d)
is one of the points on this closed curve. This shows
that the Dirac point is turned into a closed curve by
the interaction. The three tubes become smaller as the
interaction strength c gets weaker. In particular, as c
decreases, the tube will disappear first at point M and
start shrinking toward point K. However, surprisingly,
the tubes never disappear completely at K as long as c
is not zero. This indicates that the tubed Bloch bands
appear for arbitrary small interaction. Note that the
tips of the Dirac cones in Fig.3(a) have only triangular
symmetry, and do not have the cylindrical symmetry as
in the linear case.
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FIG. 4: The lowest Bloch bands for a honeycomb lattice at
the Γ-M-Γ branch. (a) Free boson; (b) BEC. The solid curves
are Bloch bands while the dashed curves are the energy of the
plane waves.

The tubed structure can be viewed as a fingerprint
left in the Bloch bands by the superfluidity of the BEC
systems. Assume that we have a mass flow of boson
particles, which is represented by plane wave eik·x with k

at the Brillouin zone (BZ) edge point M. We now slowly
turn on an optical lattice of small lattice strength. For
free bosons, the flow is stopped by the Brag scattering,
the plane wave assumes the form of sin(k · x). In the
energy band, this is reflected by that the crossing of two
plane wave energy bands at M is replaced by a gap as
seen in Fig.4(a). In the nonlinear case, the situation can
be very different: when the interaction is strong so that
the superfluid critical velocity is larger than |k|, the small
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optical lattice, which can be regarded as perturbation,
should not stop the super-flow. This implies that the
wave function describing the flow should still resemble
the plane wave eik·x, and at the same time, the crossing
of plane wave energy bands should remain unchanged.
This is confirmed by our numerical calculation shown in
Fig.4(b). When this superfluidity argument is applied to
other points along the BZ edge, we should have a tubed
structure seen in Fig.3. In other words, we can view the
tubed structure as the fingerprint left in the BEC Bloch
bands by superfluidity. For this hexagonal BEC system,
this fingerprint stays as long as c is not zero.
We emphasize that the appearance of the tubed struc-

ture in the BEC Bloch bands for arbitrary small c
is a unique feature for a honeycomb lattice: In one
dimensional lattice[16–22] and two dimensional square
lattice[23, 24], the looped or tubed nonlinear structure
in the Bloch bands appears only when c is bigger than a
threshhold value. This unique feature has a profound im-
plication when the tight-binding limit is considered. As
is well known, when the lattice is deep, it is believed that
the system should be well described by a tight-binding
model[25]. However, as shown below, the tight-binding
model is not an adequate approximation for a BEC in a
honeycomb lattice no matter how deep the lattice is.
Following the usual procedure[10, 25], we write the

bosonic field as a sum over the two sub-lattices ψ =
∑

~a ψ~au(~r − ~a) +
∑

~b
ψ~bu(~r −~b), where u(~r) is the Wan-

nier function and ~a and ~b are lattice vectors in the two
sub-lattices, respectively. Then the tight-binding Hamil-
tonian for our BEC system is

H = −
∑

<~a,~b>

J~δ(ψ
∗
~aψ~b + h.c.) +

U

2

[

∑

~a

|ψ~a|4 +
∑

~b

|ψ~b|
4
]

,

(3)

where J~δ is the hopping constant with ~δ indicating three
different neighbors and U is the on-site interaction pro-
portional to c. The ground state energy of this Hamilto-

nian is E = ±|Σ1|+U/2, where Σ1 = −
∑

~δ
J~δe

ik·~δ. This
shows that the interaction has only a trivial effect on
the band structure, lifting the Dirac bands by a constant
U/2. This is very different from the GP equation result,
where arbitrary small interaction can destroy the Dirac
bands. This surprising difference implies that the tight-
binding model can not describe well the BEC system in
a honeycomb lattice no matter how deep the lattice is.
After careful analysis, we find that the inadequacy of

the tight-binding model may be caused by the inappro-
priate choice of Wannier function. Let us consider the
case where J~δ1 = J~δ2 = J and J~δ3 > J [26]. The typical
Bloch bands for this case are plotted in Fig. 5, where one
immediately notices that the Dirac point is shifted and
the bands at point K are split, two important features

that we also see in Fig.2. To have a different J~δ3, one
needs a set of Wannier functions which have no hexago-
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FIG. 5: The linear Bloch bands of the tight-binding model
along the Γ-M-Γ branch when J~δ1 = J~δ2 = J and J~δ3 = 1.1J .
The vertical axis is the energy in the unit of J .

nal rotational symmetry. This seems to suggest that the
choice of Wannier functions, which are used to obtain the
tight-binding model, depend on the state of the system.
Conventionally, the choice of Wannier functions is inde-
pendent of the state of the system. To confirm this, more
computation needs to be done and will be carried out in
the future. One possible way of doing the computation
is to use the method proposed in Ref.[27].

Interestingly, the tubed structure shown in Fig.3 has
another important physical implication, the breakdown
of adiabaticity by nonlinearity. In the linear case, the
state of the system can adiabatically follow the lower left
band to the upper right band by passing through the
Dirac point. In the nonlinear case, this adiabatic follow-
ing is broken. This can be seen clearly in Fig.3(d): the
system can follow adiabatically passing point D till the
tip of the band, where no more band to follow and the
adiabaticity is broken. This type of breakdown of adia-
baticity is also implied in the loop structure in the one
dimensional optical lattice. Such an interesting effect has
not only been generalized to general nonlinear quantum
systems[28] but also been observed experimentally with
ultra-cold atoms[29]. However, the crucial difference of
the hexagonal system is that the breakdown of adiabatic-
ity occurs for arbitrary small interaction whereas it hap-
pens only when the nonlinearity is bigger than a thresh-
old value in the 1D system or other previously studied
systems.

Note that this interesting phenomenon is not limited
to the system of BEC in a honeycomb lattice. It can
be seen clearly when we approximate this BEC system
at point K with a three-mode model. The three-mode
model is
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4 −
√
3δky
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√
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 , (4)

where δkx and δky denote how much the Bloch wave
number k deviates away from K. This three-mode model
can also describe a BEC in a triple-well potential, where
the three wells are arranged in a triangular geometry with
the depth of each well adjustable[30, 31]. It should also be
realizable in experiment with waveguide systems[32–34]
and other nonlinear optical systems. This shows that this
breakdown of adiabaticity by arbitrary small interaction
is general and can happen in a wide range of systems.
Inspired by the experiment in [29], we here pro-

pose a scheme to realize the above mentioned triple
well configuration. The procedure is as follows. At
first, a triangular lattice is formed by three lasers.
The triangular potential can be described by Vtri =

V0

[

cos(x+ y√
3
) + cos(−x+ y√

3
) + cos( 2y√

3
)
]

with V0 <

0. The second step is to form the triple-well sys-
tems by adding a rectangular lattice Vrec(θ, ϕ) =
V1

[

cos(x/2 + θ) + cos(y/
√
3 + ϕ)

]

(V1 > 0). As θ, ϕ
changes, the second optical lattice can not only break
the triangular lattice into a series of independent triple-
well systems but also change the depth of each well. One
should be able to demonstrate the breakdown of adia-
baticity by arbitrary small interaction with this triple-
well system, similar to the experiment done in Ref. [29].
In sum, we have computed the BEC Bloch bands in

a honeycomb optical lattice. Our results show that a
tube-intersecting structure can emerge between the up
and down Dirac cones for arbitrary small interaction.
This structure has two interesting physical implications:
(1) the tight-bind model can not describe adequately the
BEC in a honeycomb lattice even when the lattice is very
deep; (2) the adiabaticity can be broken down by arbi-
trary small interaction in certain systems. For the latter,
we have proposed an experimental scheme to observe it.
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