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We describe a method to extract from experimental data the important dynamical modes in
spatio-temporal patterns in a system driven out of thermodynamic equilibrium. Using a novel
optical technique for controlling fluid flow, we create an experimental ensemble of Rayleigh-Bénard
convection patterns with nearby initial conditions close to the onset of secondary instability. An
analysis of the ensemble evolution reveals the spatial structure of the dominant modes of the system
as well as the corresponding growth rates. The extracted modes are related to localized versions
of instabilities found in the ideal unbounded system. The approach may prove useful in describing
instability in experimental systems as a step toward prediction and control.

PACS numbers: 47.20.-k, 47.52.+j, 47.27.Cn

Identification of instabilities plays a crucial role in our
understanding and description of the the dynamics of
many nonlinear physical, biological, and chemical sys-
tems driven out of equilibrium [1]. In particular, quanti-
tative description is essential for predicting and/or con-
trolling the evolution of such systems, with weather pre-
diction being a prime example. While linear stability
analysis of global disturbances in an idealized, infinite
system may provide a description of dynamics and pat-
tern selection, this approach fails for imperfect patterns
(e.g., far from onset) and in strongly confined systems.
Despite recent numerical advances [2–4] in computing the
spatial structure and dynamics of localized disturbances
in weakly chaotic patterns, no general approach has been
developed for extracting such dynamical information di-
rectly from experimental measurements.

In this Letter, we present such an approach, illus-
trating how dynamical degrees of freedom can be ex-
tracted from experiments conducted on the prototypi-
cal Rayleigh-Bénard convection (RBC) system. Specif-
ically, we determine the spatial structure and evolution
of the dominant dynamical degrees of freedom by ana-
lyzing the response of the system to an ensemble of lo-
calized perturbations about the stationary straight roll
state. In each case, we find the dynamics are dominated
by a small number of spatially-localized modes. We also
observe slowing down of the dynamics and thus quan-
tify the distance to a particular instability boundary in
terms of perturbation lifetimes. The spatial structure of
the extracted modes is found to be consistent with the
classification of secondary instabilities of spatially infi-
nite perfect patterns. We expect the applicability of the
outlined approach to extend to time dependent and/or
spatially irregular patterns.

The convection experiments were performed with a
layer of sulfur hexafluoride (SF6) gas of depth d =
700 ± 10µm compressed to 14.5 ± 0.1 bar [5]. The gas
layer was confined laterally to a 25 mm x 15 mm rectan-
gular region by filter paper sidewalls chosen to match

FIG. 1: Experimental setup includes a shadowgraph visual-
ization as well as a system for optical actuation. Inset are
observed responses to local perturbations at different param-
eter values. These disturbances represent the local version of
the skew-varicose and cross-roll instabilities, respectively, of
the unbounded system.

the fluid conductivity. The layer was bounded from
above by a water-cooled sapphire window and from below
by a carbon disulfide (CS2)-cooled zinc selenide (ZnSe)
window; the temperatures of these windows were reg-
ulated to ±0.05 ◦C. Experiments were performed with
T = 24.00 ◦C and temperature differences of 2.92 and
4.80 ◦C. Convection was visualized using the shadow-
graph method by illuminating from above and imaging
the light reflected from the ZnSe surface at the bottom
of the gas layer.

SF6 is a greenhouse gas (it absorbs infrared light
strongly); we use this property to optically apply con-
trolled thermal disturbances both to manipulate the
global convective flow as well as impose localized per-
turbations. An infrared (IR) beam from a CO2 laser
(10.6 µm wavelength) is focused to approximately 200
µm in diameter and strikes the gas layer from below (af-
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ter passing through the IR-transparent CS2 coolant and
ZnSe window). The beam is steered by two computer-
controlled, gold-plated servo mirrors that rotate about
orthogonal axes, providing the ability to direct the IR
light toward any point over the cell domain. Fig. 1 shows
the experimental setup. The extinction length of the
beam in the SF6 is < 10 µm [6], less than 2% of the cell
depth, so the absorbed beam induces a highly localized
heating that takes place very near the bottom of the gas
layer. Software developed in-house works with a commer-
cial program (LD2000) to synchronize laser power with
mirror rotations. The strong absorption and rapid scan-
ning allow for flow manipulation on a time scale much
faster than the typical dynamical time scale (vertical
thermal diffusion time of 2.7 s). This technique improves
on previous attempts to manipulate convection patterns
optically [7, 8] by introducing dynamic pattern control
while minimizing unwanted disturbances such as thermal
inertia effects from perturbative boundary heating.

A pattern of straight rolls with wavenumber q was im-
posed by sending one line of laser light into the cell at
the desired location of hot upflow for each roll, at 1 s
intervals. After drawing a full set, the process was re-
peated until the straight roll pattern was established in
about 30 s. To minimize sidewall effects, the pattern was
imposed in the central portion of the cell, 2 wavelengths
from either of the sidewalls in the wavevector direction.
This provides room for 7-9 interior roll pairs.

Secondary instabilities of the straight roll state are pre-
dicted to define the boundaries of a stability (Busse) bal-
loon in (ε, q) space at fixed Prandtl number; crossing one
of these instability thresholds results in a re-organization
of the pattern [9]. Here, ε = (R−Rc)/Rc is the reduced
bifurcation parameter that measures the distance from
onset of the primary instability of the purely conducting
state. Fig. 2 shows the Busse balloon for the spatially
unbounded system at the conditions of our experiments
(Pr = 0.84). The Busse balloon is conventionally cal-
culated assuming an infinite system; we may expect the
thresholds for the localized instabilities in a bounded sys-
tem to take place at slightly different parameter values.
Nonetheless, the balloon provides a useful reference as
different areas in the parameter space are visited, and
the dynamics of the dominant modes of the system can
be expected to depend on the distances between a given
(ε, q) point and the various instability boundaries.

Pattern manipulation allows us to use both ε and q
as control parameters. The initial pattern wavenumber
was chosen to be within the stable band. Following the
inital imprinting, actuation is restricted to only the two
outer-most rolls between which the straight roll pattern is
confined. The pattern wavenumber is adjusted by moving
the positions of these outer rolls toward or away from one
another; the interior pattern equilibrates on a timescale
of approximately 50 tv for our domain size. A closed-
loop feedback algorithm constantly analyzes images for
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FIG. 2: Stability balloon at Pr = 0.84 showing various insta-
bilities (CR = Cross Roll, ECK = Eckhaus, SV = Skew Vari-
cose, OSC = Oscillatory) of the straight roll state along with
the parameters at which the experimental data were taken for
the three data sets. DI = (0.60, 2.85), DII = (1.50, 2.40), and
DIII = (0.60, 2.20). The inset plot shows the disturbance de-
cay rate (s−1) as a function of wavenumber q at fixed ε = 0.60.

deviations of the two boundary roll positions from desired
locations and adjusts laser power accordingly.

Sufficiently close to a particular instability boundary,
the spatial modes of that instability are weakly damped
and can therefore be excited by small perturbations to
the base state (straight rolls). Each perturbation takes
the form of a brief (about 100 ms) well-localized laser
pulse directed to a single location in the convection pat-
tern. We estimate that the applied heating results in an
initially axisymmetric disturbance of diameter ∼ d/2.

We first probed the pattern response to perturba-
tions for different q near the high-wavenumber instabil-
ity boundary, with fixed ε = 0.60. Upon perturbation,
two adjacent upflow regions appear to bend toward one
another and then relax back to their initial locations;
a snapshot of a typical response is shown in the inset of
Fig. 1. The disturbance decay is slower at higher q, which
suggests using the perturbation lifetime as a measure of
distance from instability. The perturbation lifetime is
measured most easily from the apparent local roll sepa-
ration as a function of time. This signal typically displays
a large spike immediately after the perturbation, followed
by exponential decay to the original value; analysis is re-
stricted to this period of linear decay.

We find that the disturbance decay rate decreases lin-
early over an order of magnitude with increasing q (see
the inset in Fig. 2). The decay-rate distribution shows
the expected slowing down of the dynamics near the in-
stability and indicates the critical value qc = 3.00 for the
localized skew-varicose instability. Note that this value
is slightly smaller than that of the global instability pre-
dicted from analysis of an infinite domain (qc = 3.15), re-
flecting the effect of spatial localization. The low amount
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of scatter in the decay-rate plot illustrates the high de-
gree of reproducibility of the imposed perturbations.

In order to excite all dominant localized modes, per-
turbations were applied at a grid of equally-spaced loca-
tions across a wavelength of the pattern. All other per-
turbations are related to this set through the symmetries
of the system (translational invariance in the direction
perpendicular to the wavevector, periodicity in the di-
rection of the wavevector), as long as the disturbances
are sufficiently well-localized and not near the physical
boundaries. Each set contains perturbations at 12 dis-
tinct locations; in all experiments, the spatial extent of
the laser is of order 10% of the pattern wavelength, so
there is no benefit from a finer partition.

Shadowgraph images capture the evolution of an im-
posed disturbance and thus contain snapshots of the com-
posite structure of the excited modes over time. During
the perturbation decay, there exists a period of time over
which the dynamics of the disturbance can be described
by a linear evolution operator; we seek to represent this
evolution operator by computing its matrix elements in a
subspace spanned by a set of slow modes extracted from
the shadowgraph images. We first subtract the station-
ary straight roll pattern from all images after the per-
turbation. The images are then spatially windowed and
Fourier filtered. A Karhunen-Loéve (KL) decomposition
of difference images representing perturbations 2-5 s af-
ter each initial disturbance provides a set of basis modes.
All perturbations are then projected onto the subspace
spanned by this basis. Note that the typical implemen-
tation of the KL decomposition uses time-averaging [10],
whereas we employ an ensemble average over different
initial conditions. We limit our embedding dimension
to a small (usually three or four) number of modes that
capture 90% of the power of the KL eigenvalue spectrum.

Let us denote the disturbance following an initial per-
turbation b0, expressed in a low-dimensional basis. Af-
ter some time T , this state has evolved to bT . Then
Ub0 = bT , where U is the evolution operator. Using an
ensemble of initial conditions we define

B0 =
[
b0
1 b0

2 · · · b0
M

]
and similarly,

BT =
[
bT
1 bT

2 · · · bT
M

]
This gives the over-determined (least-squares) problem

for the evolution operator UB0 = BT , which is solved by

U = BT (B0)
−1

, where the reciprocal of B0 is taken to
refer to the generalized inverse of the non-square matrix.

During linear decay, each eigenmode decays at a char-
acteristic rate, so we can also write Uei = exp(σT )ei,
where ei are the eigenvectors and the eigenvalues λi are
related to the growth rates by λi = exp(σiT ).

The discrete translational symmetry of the straight roll
pattern implies that a superposition of a well-localized

a b

FIG. 3: (a) The fundamental dominant and (b) sub-dominant
mode extracted at DI . Dashed lines mark the approximate
locations of the hot fluid of the underlying base state; cold
fluid lies between the dashed lines.

a b

FIG. 4: (a) The fundamental dominant and (b) sub-dominant
mode extracted at DIII .

eigenmode with a copy of itself translated over an inte-
ger number of wavelengths is an eigenmode with the same
growth rate. Hence, there exist many possible represen-
tations of each eigenmode. Reduction of the dynamics
using the symmetries of the base pattern is useful for
both unbounded and bounded systems.

In particular, all disturbances can be decomposed in
terms of symmetries related to a roll pair. By defining
two symmetry planes, one coinciding with the center of
upflowing hot fluid, the other at the center of adjacent
cold fluid, we can define four symmetric versions of every
initial disturbance, each even/odd about the two symme-
try planes. Each of the corresponding four subspaces is
invariant: evolving disturbances retain their symmetry.

The entire collection of initial and final conditions ex-
tracted from experiment was decomposed using these
symmetries, producing four independent ensembles. All
eigenmodes extracted from the four ensembles are eigen-
modes of the system, but in the cases when multiple
eigenmodes share an eigenvalue (growth rate) we elim-
inate redundant representations by computing the most
spatially-localized eigenmode structure.

We estimate the uncertainty in the growth rates to be
less than 10%. This allows one to group all extracted
modes and define the fundamental mode as the most-
localized structure with a particular growth rate. The
fundamental modes were computed by minimizing the p-
norm (p < 2) among linear combinations of all modes
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(and their translated copies) in each group. Here the p-
norm of a vector v, with i-th component vi, is defined
as (

∑
i v

p
i )1/p. The symmetries imply that all extracted

modes in each group can be represented as linear super-
positions of the fundamental mode along with its trans-
lated and/or reflected copies. We verified that this is in-
deed the case as such representation was accurate, with
mutual projection > 0.94.

The first ensemble was produced at the point DI of the
parameter space (see Fig. 2). The two dominant modes
are shown in Fig. 3. As the lifetime measurements indi-
cate, the least-stable mode (σ1 = -0.13 s−1) tended to be
excited from perturbations to cold fluid. Note, however,
that while the structures excited from these disturbances
are even about the downflow symmetry plane, the most-
localized representation of this mode does not obey that
symmetry. The sub-dominant mode (σ2 = -0.70 s−1)
tended to be excited from perturbations to hot fluid.

A second set of perturbations at high q was performed
atDII , with ε increased relative toDI . Again, two modes
are extracted; σ1 = -0.15 s−1 and σ2 = -0.55 s−1. Mutual
projections of the modes extracted at DI and DII indi-
cate that the spatial structure of the two dominant modes
remains unchanged (after scaling by the wavelength) be-
tween these two locations. There is also, in both cases,
a large separation between the two growth rates. This
suggests we can identify the dominant mode (Fig. 3a) as
the one representing the secondary instability at the high
wavenumber boundary. Its structure is consistent with a
skew-varicose type instability.

We also created an ensemble of perturbations to pat-
tern with low q, at DIII . Again, two modes were ex-
tracted, with growth rates σ1 = -0.20 s−1 and σ2 = -0.27
s−1. Shown in Fig. 4, the spatial structure of the dom-
inant mode does not resemble any of the previously ex-
tracted modes, while the sub-dominant mode resembles
the sub-dominant mode extracted at both DI and DII .
The closeness of the growth rates is consistent with the
existence of two low-q instability types of the unbounded
system that occur at very nearly the same parameter
values, namely, the Eckhaus and cross-roll instabilities
(see the Busse balloon in Fig. 2). The dominant mode
is again excited from perturbations to cold fluid; this is
not surprising, as heating of cold fluid tends to reduce
the amplitude of the saturated state. We find exper-
imentally that sufficiently strong perturbations of this
kind result in the growth of rolls perpendicular to the
base pattern. We therefore identify the dominant low-
wavenumber mode with the localized cross-roll instability
and the sub-dominant mode with the localized Eckhaus
instability.

Further experiments are needed to explore the applica-
bility of this approach to states exhibiting more complex
dynamics. One such state, occurring in gas convection
experiments with Pr ≈ 1, is the spatiotemporally chaotic
state known as Spiral Defect Chaos (SDC) [11]. While

there exists a bistability between stationary straight rolls
and SDC [12] over the parameter range of the experi-
ments reported here, localized instability in the straight
roll pattern introduces defects which tend to lead to a
disordered pattern, thus providing a mechanism for the
transition to chaotic behavior. Additionally, it was deter-
mined in a numerical study [2] that the chaotic dynamics
of SDC are largely driven by the creation/annihilation of
defects occuring in straight roll regions of the pattern.
We expect, therefore, that spatially-localized modes are
dynamically important in both the transition to and the
driving of chaotic behavior, suggesting a natural exten-
sion of our experimental approach to investigations of
more complex convection patterns. Moreoever, the out-
lined procedure is general enough to be used in a va-
riety of other dynamical systems, so long as an appro-
priate means of system actuation can be developed. In
addition to being of fundamental interest and of use in
increasing predictive power, knowledge of the modes of
instability could be particularly advantageous in system
control, where small, controlled perturbations could be
used to guide system dynamics [13].
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