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Optomechanics experiments are rapidly approaching themeaghere the radiation pressure of a single pho-
ton displaces the mechanical oscillator by more than its-peint uncertainty. We show that in this limit the
power spectrum has multiple sidebands and that the cawdporese has several resonances in the resolved-
sideband limit. Using master-equation simulations, we atsdy the crossover from the weak-coupling many-
photon to the single-photon strong-coupling regime. Hnale find non-Gaussian steady-states of the me-
chanical oscillator when multi-photon transitions areoremt. Our study provides the tools to detect and take
advantage of this novel regime of optomechanics.

PACS numbers: 42.50.Wk, 42.65.-k, 07.10.Cm, 37.30.+i

Introduction. Optomechanics is a rapidly growing field of . 2un ‘ —
research studying mechanical degrees of freedom coupled @) X ® —"
modes of optical cavities via radiation pressure, opticatlg hﬂ; A~ wp ﬁil ,
ent, or photothermal forces [1, 2]. Work in this area is l&rge mt a , f , b
motivated by building more sensitive mass and force sensor =~ 0 : —
[3], providing long-range interaction between qubits itufe ELr/gm

guantum information hardware [4], and probing quantum me:

chanics at increasingly large mass and length scales [5].
gy'arg 9 [5] FIG. 1: (Color online) (a) Standard optomechanics setup:pibsi-

In t_he Stan_dard OptomeCh_amCS setup, the position of a M&on & of a mechanical oscillator is parametrically coupled toiaedr
chanical oscillator parametrically modulates the freqyesf  4yity modea. (b) Spectrum and eigenfunctions of Hamiltonian (1).
an optical cavity mode. In most experiments to date this opThe energy axis is not to scale. Parabolas indicate theatisglhar-
tomechanical coupling is small compared to the mechanicahonic oscillator potentials fat = 0, 1, 2 photons and witly < 0.
frequency and the cavity linewidth. However, if the caviy i
strongly driven and thus contains a large number of photons, ) ) )
the coupling between the mechanical oscillator and the flucoPtomechanics and exploit the nonlinear spectrum to create
tuations of the cavity field is enhanced by a facyar, where non-Gaussian stef_;ldy-stgtes of the mechanical oscillator. _

n is the mean photon number in the cavity. This has recentlV€@k coherentoptical drive we use the polaron transfoomati
led to the observation of radiation-pressure effects, redr to calculate propemes_ of the ou_tput light to all ordershie t
sideband cooling [6-11], normal-mode splitting [12, 13ida optomec_hanlcal coup_llng. _We find that the power spectrum
optomechanically-induced transparency [13-15]. has multiple mechanlcal_ sidebands and _the cavny response

In this weak coupling regime the Hamiltonian is quadratichas several resonances in the resolved-sideband limihgUsi

so that ordinary thermal and vacuum noise lead to GaussidiaSter-equation simulations, we calculate these obses/ab
steady-states. To create more general and possibly mere int throughout the crossover from the many-photon to the single

esting and useful states one either needs non-Gaussian infRfoten limit. Finally, we show that multi-photon transit®
noise, e.g. driving the system with single-photon sourte} [ Can lead tonon-Gaussian steady-states which might erfeble t
or one has to make the system nonlinear. The latter can b_%bs_ervatlon of qua_ntum tunneling and noise-induced switch
achieved either via measurement backaction [17] or iritrins N9 in 0ptomechanical systems. _
non-linearities, e.g. coupling the resonator via a qubtht Model. We consider th.e_ standard modellof optomechanlcal
mechanical oscillator [18] or engineering an optomecheinic SYStems where the position of a mechanical oscillator:
interaction which couples the position squared of the tascil #zPF(b + bf), is parametrically coupled to an optical cavity
tor to the cavity mode [9, 19-21]. modea, see Fig. 1 (a). Settiny = 1 the Hamiltonian reads
. Se\(eral optomechanics setups, using either ultracoldsatom Hy = wpratda + wybh + ngd(l; + BT) 1)
in optical resonators [22], optomechanical crystals [23©
perconducting circuits [13], are approaching the limit véhe wherewp, is the resonator frequeney,,; the mechanical fre-
the radiation pressure of a single photon displaces the meguency, andy = wyzzpr is the optomechanical coupling.
chanical oscillator by more than its zero-point unceriaitr TypF = (2MWM)*1/2 is the zero-point uncertainty/ the
this single-photon strong-coupling regime the full par&me mass of the mechanical oscillator, anf] = ‘95“—;? the deriva-
ric coupling, i.e. three-wave mixing in the language of quan tive of the resonator energy with respect to the oscillatsr p
tum optics, has to be taken into account. To date there existition z. a andb are bosonic annihilation operators for the
little literature on this subject with the notable exceptif  cavity mode and the mechanical oscillator, respectively.
Refs. [24-26]. Note first that the Hamiltonian (1) conserves photon num-
In this paper we show how to detect this novel regime ofber, i.e.[a'a, HO] = 0. The Hamiltonian in the subspace:of



@ 1 (b) 2 T In steady-state and for weak optical drive we obtain
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Using this analytic approach, we calculate properties ef th
optical field. We get for the steady-state mean photon number

FIG. 2: (Color online) Detecting the single-photon straugpling
regime: (a) Steady-state mean photon nuribé:) as a function of
detuningA and (b) power spectrur(w) atA = 0. wa = g and
war/y = 20 for all curves,wyr/k = 2 andny, = 0 (blue solid),
wym/k = 2 andng, = 1 (red dashed) as well asy;/x = 0.5 and St 0o —
ne = 0 (black dash-dotted). The thin black solid line in (a) shows (a'a) S (9/wnm) 3 "\ (e + 1) *nk
the empty cavity responsg = 0 for comparison.ng is the mean no 4n! k th th

photon number on resonance, ig. = 40Q7/x?. =0 k=0 )
k(K + n/y)e—(g/wM) (2nen+1)

(B2 + (A — (n — 2k)war)?

(6)

photons is a harmonic oscillator with frequenay; which is and the cavity amplitude relevant for homodyne experiments

displaced by-—nzq/xzpr = —2ng/w. Thus, the eigenval-

ues of (1) are,,,,, = wrn — ¢g*n?/war + wyrm with non- a oo w12t I I

negative integera andm. The anharmonicity is proportional <—n> = Z % Z (k:) (ngn + 1)""“nfh

to the product of photon number and oscillator displace- 0 n=0 T k=0

mentz which is linear in the photon number We show the ke—(9/wn)?(2nin+1)

spectrum and eigenfunctions of Hamiltonian (1) in Fig. 1 (b) x (52 — (A — (1 — 2K)war) ()
5 ,

In order to include drive and decay we use standard input-
output theory [27]. In a frame rotating at the frequency @ th whereng = 40Q2/k? with Q = /kl|ai,| is the mean pho-
optical drive, the non-linear quantum Langevin equatieaslr  ton number forg = 0 on resonancél = 0. The quanti-
ties (6) and (7) are sums of resonances which are spaced by
the mechanical frequeney,,;. Let us discuss first the case

P CA A K. . 24 A\ . . 4 .

= +iAa— 24~ (b + b) @ + VK in () of zero temperature, i.e1, = 0, when only terms with
P S e : k = 0 contribute in Egs. (6) and (7). In this case, the reso-
b= —iwpb 2b iga'a + /7 bin. (3) nances are weighted by a Poisson distribution with variance

(g9/wnr)? and the widths are + n. The resonances can be
whereA = w;, — wg is the detuning between lasey, and understood as transitions between the vacuum Kiaé and
resonator frequencyy, and~ andx are the mechanical and the manifold of one-photon eigenstateésn) of the Hamilto-
cavity damping rates. The cavity inpég, is a sum of a co- nian (1). They are resonant if the laser frequengymatches
herent amplitudes;,, and a vacuum noise operatpsatisfy- ~ wr = Ei,n — Eoo = wr — g% /wa +mwar. The Poission dis-
ing (£()ET(t")) = 6(t — ') and (T (1)E(¢')) = 0. Finally, tribution is due to the Franck-Condon factd(s:|e™ |0)[> =
we assume that thg meghanical bath is Markovian and has|q" dz ¥, (x—x0 )0 (2)|? = (g/wM)2me—(g/wM)2/m1 where
temperaturel’, i.e. (bin ()bl (")) = (ng + 1)6(t — ') and  |m) is the state withn phononsy,y () is its real-space wave-
(b5 (O)bin(t')) = nend(t — ') with n! = ePon/ksT 1, function, andzg /zzpr = 2g/was. At finite temperature the

The model is characterized by three dimensionless paranttates0, m) with m > 0 are thermally occupied leading to a
eters: the mechanical quality factan;/y, the resolved- redistribution of weight among the peaks and additional+es
sideband parametefy; /, and the granularity parametgf; ~ Nancesaby = wg — 9° Jwum —mwpe
[26, 28]. The latter is the cavity frequency shift in unitsitsf In the limit # > ~+ we obtain the cavity spectrutsi(w) =
linewidth when the oscillator is displaced by one zero-poin J— dt€™![(af(1)a(0)) —[(a())|?] as
uncertaintyrzpr. Finally, 2g/wyr = 2(g/k) x (war/k) "

is the oscillator displacement in units efpr caused by the S(w) = Z Crn(m +n)y @)
radiation pressure of a single photon|df > wy, we will say < [ (m+4n)y]? 2

essure ol /e Wit S mon=0 [ 5N 4 {(w — (m — n)w]
the system is in the single-photon strong-coupling regime. 2

Approximate solution for weak drive. It is well known that  with then = m = 0 term excluded. The coefficients,,,, are
the Hamiltonianf, can be diagonalized by the polaron trans-independent of; but rather involved and will not be shown.
form given byl = e~ with § = —=afa(b" — b) [29]. Here The optical output spectrum has sideband peaks at integer
we use it to find an approximate solution to Egs. (2) and (3). multiples of the mechanical frequengy,; whose widths are
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@0 . I T torsd andé describing the fluctuations around the mean values
K i o3 1000 j\‘l a andb, respectively, satisfy equations of motion equivalent to
L So2 B the quantum master equation

) ol - 500

ot S o = I 3 ) T 5 . .

N N P o= —i [H{), g} + &D[d]o + v(nwm + 1)D[¢)e + ynumD[éT 0
(d) gx10™ ©og ® (9)
ny . = with the Hamiltonian
= & 0.4 @

2 A Ay A ~ A Ay A

" ° Hy = —A'd'd+wyéle+g(ad+ad) (é+ é)+gd'd (¢ + )
R wv—/zw 0o 2 = -0 R 2 1 (10)

where the detuning is renormalizel = A — g(b + b*).
FIG. 3: (Color online) Crossover from many- to single pholiamit: D(6]o = 606" — (6760 + 06'6) /2 is the standard dissipator in
Steady-state mean photon numbigta) as a function of detuning.  Lindblad form. This is an exact description of the system in a
Ea)) g;ff = 3601 ch}g/ff 3021: (g) Q/k - 0.5 andiq/n 5 0A5/' and  frame where the mean of both harmonic oscillators has been
C K = andg/kx = 0.0l. Parameters arens /k = 2, KR = H
22, wa /7 = 100 andmu, = 0. We show Eq. (6) (red solidjg?  C'sPlaced to the vacuum. . _
. o 5t Outside the bistable region, for large mean cavity ampditud
(blue dash-dotted), linear theof§|* + (d'd) (green dashed) and _ d Il oot hanical linq the last t in th
simulations of Eq. (9) (black dots). (d-f) Output spectridifw) at a an. sma optomechanical coupligg (he las e.rm in the .
A = 0 for the same parameters from simulations of Eq. (9). Hamiltonian (10) can be neglected. We then obtain a quadrati
Hamiltonian or equivalently a set of linear quantum Langevi

equations which can be solved exactly. In this linear theary

S y- ity
multiples of the mechanical linewidth At zero temperature ha\\//ve<d> =0, and the %P:oton r(;gn;ber IS ?';’hen fay” + <.d ‘?' |
there are peaks only at negative frequencies because ghoton € now compare the predictions of theé numerical Soiu-

can only create phonons and leave the cavity with frequenciet'on of the quantum master equation (9) to the linear the-

smaller than the laser frequency.. At finite temperature ory gnd the analytic expressions (6) and (8) derived above.
(or stronger optical drive) additional peaks appear attjvesi In F'%‘ A3 (a-c) we plot the stegdy-state mean photon num-
frequencies since there is a finite probability that a phaton b]?r (a"4) as a function of detunlng;;or three different sgts
sorbs the energy of one or more phonons and leaves the cavﬁ\/ parameters. Foft/x = 0.01 andg/x = 2 we are in

with a frequency larger than the laser frequengy In pass- e single-photon strong-coupling limit. The numerical so

ing we note that driving on these additional sidebands in théunon _Of Eq. (9) ShF)WS several_resonances ‘de agrees very
resolved-sideband limit leads to multi-phonon cooling ethi well with the analytical expression (6). The linear theasy i

will be discussed in a future publication not appropriate in this regime. This is signaled by the faat t

the size of the fluctuations by far exceeds the mean photon

In Fig. 2 (a) we plot the steady-state mean photon NUMpmper: 52 < (did). At intermediate coupling and drive,

ber (aTa) as a function of detuning\ for a system entering Q/x = 0.5 andg/x = 0.5, the numerical simulation of (9)

the single-photon strong-coupling regime.= wyy. In the predicts one large peak slightly belatv = 0 and a small
good-cavity limitk < wys the cavity response shows several resonance close to the blue sideband= wy;. Eq. (6) and

resolved resonances. At finite thermal phonon number addiy,q jinear theory qualitatively describe this feature kit to
tional peaks appear and their weights are redistributetl umagree with the numerics quantitatively. Finally, fofx = 20
eventually they blur into a broad thermal background. In theandg/n — 0.01 we are well inside the regime where the lin-

bad-cavity ”mi_t” > wy the resonances overlap and broaden,,, theory is valid. It correctly predicts a slightly asynirite
the empty cavity resonance. In Fig. 2 (b) we present the Ouﬁ:')eak close ta\ — 0.

put spectrunt(w) at zero detuning\ = 0. It shows a series
of peaks at multiples qf t_he mechan!cal frequengy for "_"” the same parameters obtained from simulations of Eq. (9). In
s_et_s of parameters: within anq (_Jut5|de the resolved-sitkba the single-photon strong-coupling limit it has multiplelei

limit as well as for a zero and finite thermal phonon number. bands and agrees quantitatively with Eq. (8). As the drive

Crossover between the many- and the single-photon limit.  strength increases, additional sidebands at positiveiéneq
Let us now compare the single-photon strong-coupling regimcies appear. With decreasing optomechanical couplitige
to the more familiar case of weak optomechanical couplingyeight gradually concentrates in the two sidebands at
and study the crossover between these two extreme limits. ,,, as predicted by the linear theory.

For numerical simulations it is advantageous to use the dis- Non-Gaussian steady-states via multi-photon transitions.
placement transformation by writing = @ + d andb = In the final part of this paper we address the question as to
b + ¢. We obtain a set of coupled equations for the mearnow the nonlinear single-photon strong-coupling limitdea
valuesa and b: 0 = iAa — ga — i — ig(b + b*)a and  to non-Gaussian steady-states for the mechanical oscillat
0 = —iwab— Zb—1iglal?. Itis well-known that these nonlin- Recalling the spectrum of the Hamiltonian (1) we notice
ear equations have either one or three solutions. In ther latt that for A = —ng?/w; multi-photon transitions between the
case the system is said to be (classically) bistable. Themepe vacuum state0, 0) and the lowest-energy state withpho-

In Fig. 3 (d-f) we show the optical output specfaw) for
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FIG. 4: (Color online) Non-Gaussian steady-states viairphioton
transitions. (a) Steady-state mean phonon nur(ﬁﬁér) (blue solid)
and the second-order coherence of the mechanical oscilfate-
(bThTbb) /((bTh))? (green dashed) as a function of drive strength
(b) Phonon number distributioR,, at 2/« = 0.6. Parameters are
A= —392/wM, wym/k = 2,wn /v = 1000, andg/k = 1.
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