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We consider photon pair production in hadronic collisions at large mass and small transverse
momentum of the pair, assuming that factorization in terms of transverse momentum dependent
parton distributions applies. The unpolarized cross section is found to have azimuthal angular
dependencies that are generated by a gluonic version of the Boer-Mulders function. In addition, the
single-transversely polarized cross section is sensitive to the gluon Sivers function. We present simple
numerical estimates for the Boer-Mulders and Sivers effects in diphoton production at RHIC and
find that the process would offer unique opportunities for exploring transverse momentum dependent
gluon distributions.
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Introduction.— Hard hadronic processes with small
transverse momentum qT of an observed final-state sys-
tem have attracted a lot of interest because of their sen-
sitivity to intrinsic parton transverse momenta. Such
processes may hence offer detailed insights into the par-
tonic substructure of hadrons, in terms of transverse-
momentum dependent parton distributions (TMDs). Of
particular interest are correlations of the parton trans-
verse momentum with the nucleon or quark spin, which
are expressed by the Sivers [1] and Boer-Mulders (BM) [2]
functions. From these, one ultimately hopes to learn
about spin-orbit correlations and orbital angular mo-
menta of partons confined in a nucleon. So far, the main
focus of the field has been on quark TMDs. This is due to
the fact that quark TMDs are primarily probed in semi-
inclusive deep-inelastic scattering (SIDIS) and the Drell-
Yan (DY) dilepton production process, which have been
accessible experimentally [3]. On the theoretical side, the
relative simplicity of these two reactions has allowed to
derive factorization theorems involving TMDs [4, 5].

Gluon TMDs [6] and processes sensitive to them have
received closer attention only quite recently, at least for
cases where nucleon or gluon polarization matter. Sev-
eral processes for accessing the Sivers [7, 8] gluon distri-
bution, or the gluonic version of the BM function (more
appropriately described as the TMD distribution of lin-
early polarized gluons in an unpolarized nucleon) [9, 10],
have been proposed for high-energy hadronic collisions, in
particular at the Relativistic Heavy Ion Collider (RHIC),
or for ep scattering at a future Electron Ion Collider
(EIC). There is a generic dilemma concerning the pro-
cesses considered so far: in cases where experiments can
be carried out at today’s hadron colliders, factorization
is known to be broken for TMDs [11], or to hold at
best for weighted asymetries that only give information
on integrated TMDs with certain transverse momentum
weights. On the other hand, while transverse-momentum
dependent factorization is expected to hold for reactions

such as ep → cc̄X or ep → jet jetX [9], realization of an
EIC is still a decade or so away.

In this paper we argue that the process pp → γγX can
be used to study spin-dependent gluonic TMDs in a the-
oretically clean process already at RHIC. In proposing
this process, we are motivated by the following observa-
tions. First of all, since the final state is a color singlet,
the diphoton process is expected to share many features
with DY, as far as factorization is concerned. Indeed, like
DY, its lowest-order contribution comes from qq̄ annihi-
lation, qq̄ → γγ, which can be shown to give rise to the
same Wilson lines as the DY subprocess qq̄ → γ∗, and
hence involves the same quark and anti-quark TMDs.
Second, it has been known for a long time that in the
spin-averaged case [12] at colliders photon pair produc-
tion is in fact dominated by the process gg → γγ, that
is, gluon-gluon fusion to a photon pair via a quark box.
Even though this process is formally down by two pow-
ers of the strong coupling constant αs with respect to
qq̄ → γγ, the suppression is compensated by the struc-
ture of the associated hard-scattering function, and by
the size of the gluon distribution function. Hence, an ex-
perimental study of gluon TMDs should in principle be
possible in this process. Finally, in order to study TMDs,
precise measurement of the (small) transverse momen-
tum of a final state is crucial. It seems to us that this
should be easier to achieve for a photon pair than, for
example, for the jet pair in the reaction ep → jetjetX .

Being a background to a possible Higgs boson decay
into two photons, QCD diphoton production has received
a lot of attention in theoretical studies, in particular,
for the diphoton pair transverse momentum distributions
based on perturbative all-order resummation of Sudakov
logarithms [13, 14]. In fact, these studies pointed out
that the resummation formalism naturally suggests the
presence of gluon TMDs, among them a perturbative
spin-flip distribution akin to the gluonic BM function.
In our present paper, we examine the diphoton process
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entirely from the point of view of TMD factorization.
Focusing on the gluonic Sivers and BM functions, we re-
strict ourselves to the application of an effective tree-level
TMD formalism in the spirit of Refs. [15, 16]. At present,
we are not able to present a proof that TMD factoriza-
tion indeed holds for this process. Given the color-singlet
nature of the final state and its similarity to DY kinemat-
ics, it appears plausible that such a factorization could be
established if Q ∼ pT ≫ qT , where Q (qT ) is the photon
pair mass (transverse momentum) and pT the transverse
momentum of one photon. We hope that our study will
motivate work in this direction.

Measurements of diphoton production have been car-
ried out at the Tevatron [17]. Detection of diphoton sig-
nals should be well feasible in polarized pp collisions at
RHIC [18] – statistics for the reaction will depend of
course on the collected luminosity. Concerning the ex-
traction of TMDs from pp → γγX , a potential compli-
cation arises due to the fact that photons can also be
produced in jet fragmentation, which would very likely
spoil TMD factorization. Such fragmentation contribu-
tions may be strongly suppressed or even eliminated by
using isolation cuts on the photons. We leave a more
detailed discussion of this issue to a future publication.

Kinematics.— We analyze the diphoton process
h(Pa) + h(Pb) → γ(qa) + γ(qb)+X in the center-of-mass
(c.m.) frame of the incoming hadrons with momenta
Pµ
a =

√

S/2 [0 , 1 ,~0T ] and Pµ
b =

√

S/2 [1 , 0 ,~0T ], where
we used the light-cone notation aµ = [a−, a+,~aT ], with
a± = (a0 ± a3)/

√
2, ~aT = (a1, a2), and S = (Pa + Pb)

2.
The expressions for the photon momenta are much sim-
plified for qT ≪ Q [16]

qµa/b =
√
S
2

[

xb
1∓cos θ√

2
, xa

1±cos θ√
2

,±√
xaxb sin θ ~eφ

]

, (1)

where the upper (lower) sign in above expression refers to
photon a (b), xa/b = q2/(2Pa/b · q) with the photon pair
momentum q = qa + qb, and the spatial orientations of
the photons are fixed by their angles θ, φ in the Collins-
Soper (CS) frame [4, 16]. The Lorentz transformation be-
tween the c.m. frame and CS-frame has been worked out
in Ref. [16] for the (kinematically identical) DY process
hh → ℓ+ℓ−X . In Eq. (1), ~eφ = (cosφ, sinφ). Additional
azimuthal dependence may be introduced by transverse
spin vectors of the hadrons, ~Sa/bT = (cosφa/b, sinφa/b).
The partonic Mandelstam variables expressed in the
c.m.-frame read s = 2ka · kb = Q2, t = −2ka · qa =
−Q2 sin2 θ

2 and u = −2kb · qa = −Q2 cos2 θ
2 , where ka/b

are the incoming parton momenta.
Photon pair production in qq̄ annihilation.— At low-

est order, photon pairs are produced through quark-
antiquark annihilation, qq̄ → γγ. By following the same
steps of the DY calculation in [16], we find for qT ≪ Q

dσqq̄→γγ

d4q dΩ

∣

∣

∣

qT≪Q
=

2

sin2 θ

dσqq̄→l+l−

d4q dΩ

∣

∣

∣

qT≪Q
(e2q → e4q) ,

(2)

Figure 1: Photon pair production by gluon-gluon fusion.

where the expression for dσqq̄→l+l− can be found in
Ref. [16]. In Eq. (2), the overall factor 2/ sin2 θ is caused
by the fact that the process qq̄ → γγ proceeds via t and u
channels while the DY process is s-channel. As pointed
out above, the diphoton production and DY share the
same quark and antiquark TMDs because both have only
initial state interactions.

Gluon TMDs and photon pair production.— Gluon
TMDs are defined through the correlator [6]

Γµν;λη(x,~kT ) =
1

xP+

ˆ

dz−d2zT
(2π)3 eik·z (3)

×〈P, S|F a
µν(0)Wab[0 ; z]F b

λη(z) |P, S〉
∣

∣

∣

z+=0
,

which is a diagonal hadronic matrix element of two field
strength tensors Fµν between nucleon states with large
momentum component P+ and spin vector S. The Wil-
son line Wab with color indices a, b in the adjoint rep-
resentation makes the correlator gauge invariant [5, 11].
However, the explicit form of the Wilson line depends on
the color structure of partonic scattering that the gluon
TMDs are convoluted with. For the gg → γγ subprocess
of photon pair production, we have all gluon TMDs with
past-pointing Wilson lines.

The leading terms in a 1/P+-expansion of Γµν;λη are
given by Γ+i;+j with transverse indices i, j ∈ {1, 2}.
For an unpolarized (U) or a transversely polarized (T )
hadron of mass M one has the following decompositions
of the correlator Γ+i;+j into gluon TMDs [6, 21]:

Γ+i;+j
U (x,~kT ) = δij

2 fg
1 +

ki
T kj

T
− 1

2
~k2
T δij

2M2 h⊥g
1 ,

Γ+i;+j
T (x,~kT ) = − δij

2
ǫrsT kr

TSs
T

M f⊥g
1T +

iǫij
T

2

~kT ·~ST

M g⊥g
1T

+
S

{i
T

ǫ
j}r
T

kr
T+k

{i
T

ǫ
j}r
T

Sr
T

8M hg
1T +

k
{i
T

ǫ
j}r
T

kr
T

4M2

~k·~ST

M h⊥g
1T , (4)

where ǫijT ≡ ǫ−+ij and a
{i
T ǫ

j}r
T ≡ aiT ǫ

jr
T + ajT ǫ

ir
T . Each

of the TMDs in (4) is a function of x and ~k2T . The un-
polarized correlator ΓU contains two gluon TMDs, the
unpolarized gluon distribution fg

1 and the gluonic BM

function h⊥g
1 . ΓT is parameterized by the gluon Sivers

function f⊥g
1T , and several other gluon TMDs [6]. Among

these, h⊥g
1T is the gluon “pretzelosity” TMD.

The leading order diagrams for gg → γγ are shown
in Fig. 1. Helicity amplitudes for them have been pre-
sented in Refs. [19, 20]. While these could be combined
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in a way suitable for projecting onto transverse exter-
nal gluon indices, we choose to compute the diagrams
directly, defining “semi-contracted” amplitudes Mij

±± ≡
Mij

ρσ

(

ερ±(qa)
)∗ (

εσ±(qb)
)∗

, with transverse gluon indices
i, j, and contracted with photon polarization vectors
ε±(qa/b). To perform the loop integrals, we use stan-
dard Mellin-Barnes space methods. The semi-contracted
amplitudes Mij

±± are finite. We obtain

Mik
±± = −K

(

εi−ε
k
− + εi+ε

k
+ − εi∓ε

k
± + fs ε

i
±ε

k
∓
)

,

Mik
±∓ = K

(

ft ε
i
∓ε

k
∓ + fu ε

i
±ε

k
± + εi−ε

k
+ + εi+ε

k
−
)

,(5)

with ε± = (1,±i)e∓iφ, K ≡ 2δabαsαem

∑

q e
2
q, where eq

denotes the charge of the quark in the box and a, b are the
gluon adjoint color indices. Furthermore, fs ≡ L(t, u),
ft ≡ L(s, u), fu ≡ L(s, t), with L defined as

L(x, y) = 1− x−y
x+y

(

ln |xy | − iπθ(−x
y )
)

+ 1
2

x2+y2

(x+y)2

(

π2 +
(

ln |xy | − iπθ(−x
y )
)2

)

. (6)

Note that we have fs = −M
(1)
++−−, ft = −M

(1)
+−+−, fu =

−M
(1)
+−−+ in terms of the helicity amplitudes of [20].

Our semi-contracted amplitudes and the correlator
Γ+i;+j of Eq. (3) can now be used to compute the cross
section for gg → γγ in the TMD formalism:

dσgg

d4q dΩ
= H

ˆ

d2kaTd
2kbT δ(2)(~kaT + ~kbT − ~qT )× (7)

Γ+i;+j(xa, ~kaT ) Γ
−k;−l(xb, ~kbT )

∑

λ1,λ2

Mik
λ1λ2

(

Mjl
λ1λ2

)∗
,

where H = (128(2π)2xaxbS
2)−1, and where we sum over

the photon helicities.
Using the decomposition in Eq. (4) we derive from

Eq. (7) the following result for the unpolarized and sin-
gle transverse spin polarized cross sections in terms of
the CS frame angles:

dσgg
UU

d4q dΩ
= σgg

0

[

F1(θ) C [fg
1 fg

1 ] + F2(θ) C
[

w5 h
⊥g
1 h⊥g

1

]

+cos(2φ)
{

F3(θ)
(

C
[

w1 h
⊥g
1 fg

1

]

+ C
[

w2 f
g
1 h⊥g

1

])}

+cos(4φ)
{

F4(θ)C
[

w4 h
⊥g
1 h⊥g

1

]} ]

, (8)

dσgg
TU

d4q dΩ
= σgg

0 |~ST | sinφa

[

F1(θ) C
[

w3 f
⊥g
1T fg

1

]

+

F2(θ)
(

C
[

w6 h
g
1T h⊥g

1

]

+ C
[

w7 h
⊥g
1T h⊥g

1

])

+ ...
]

, (9)

where σgg
0 ≡ 2K2H, and where the ellipses denote ad-

ditional terms that vanish upon φ-integration. We have
defined F1(θ) = f2

s + |ft|2 + |fu|2 + 5, F2(θ) = 2(fs − 1),
F3(θ) = fs+ℜ[fu+ft]−1, F4(θ) = fuf

∗
t +ftf

∗
u +2, and

C [w f1 f2] ≡
ˆ

d2kaT d
2kbT δ(2)(~kaT + ~kbT − ~qT )

× w(~kaT , ~kbT )f1(xa, ~k
2
aT )f2(xb, ~k

2
bT ). (10)

Defining (ab)± ≡ (a1b1±a2b2)/2M
2 and [ab]± ≡ (a1b2±

a2b1)/2M
2, the following weights appear in (8) and (9):

w1 = −2(kaTkaT )− , w2 = −2(kbTkbT )− ,

w3 = 1
M kaT,2 , w4 = (kaT kbT )

2
− − [kaTkbT ]

2
+ ,

w5 = [kaTkbT ]
2
− − (kaT kbT )

2
+ ,

w6 = 1
2M ((kbT kbT )+kaT,2 − 2(kaTkbT )+kbT,2) ,

w7 = − 2
M (kaT kbT )+[kaT kbT ]−kaT,1 . (11)

We stress that the angular structure of the unpolarized
cross section shown in (8) is identical to that found in the
context of collinear factorization for perturbative soft-
gluon radiation from the LO process gg → γγ [13, 14].
This may hint at a possible matching of the TMD
and collinear formalisms in the intermediate qT -region
ΛQCD ≪ qT ≪ Q. We also note that weighted cross sec-
tions of the form 〈F 〉 ≡

´

d2qT dφF (qT , φ) (dσ/d
4q dΩ)

may help in disentangling the various terms in (8) and

(9). For instance, 〈q4T cos(4φ)〉 ∝ h
⊥(2)g
1 (xa)h

⊥(2)g
1 (xb),

and 〈q2T cos(2φ)〉 ∝ h
⊥(2)g
1 (xa) f

(0)g
1 (xb), with kT mo-

ments of fg
1 and h⊥g

1 .
IV. Numerical estimates.— In order to estimate the

size of the various contributions to (8),(9), we use a Gaus-
sian model for the TMDs as frequently chosen for the
analysis of SIDIS or DY data [3, 22]. For the unpolar-
ized quark and gluon TMDs f q,g

1 we make the ansatz

f q
1 (x,

~k2T ) =
fq

1
(x)

πβ e
−

~k2
T

β , fg
1 (x,

~k2T ) =
G(x)
πγ e

−
~k2
T

γ , (12)

with widths β and γ for which we assume β = γ =
0.5GeV2 at RHIC, and with the kT -integrated parton
distributions of [23]. Very little is known about the
other quark and gluon TMDs at RHIC energies. Model-
independent positivity bounds for them were derived in
Refs. [6, 24]. To estimate the maximally possible effects
in the diphoton process we assume saturation of these
positivity bounds for both quarks and gluons. For the
gluon Sivers function this gives approximately

|f⊥g
1T | ≃ M

kT
fg
1 . (13)

Similarly the positivity bounds lead to the following ap-
proximations for the other TMDs: |h⊥g

1 | ≃ (2M2)/k2T fg
1 ,

|h⊥q
1 | ≃ |f⊥q

1T | ≃ M/kT f q
1 , |hg

1| ≃ M/kT fg
1 (with hg

1 =

hg
1T + k2T /(2M

2)h⊥g
1T ) and |h⊥g

1T | ≃ (2M3)/k3T fg
1 .

In Fig. 2 we present our numerical estimates from our
Gaussian ansatz. In generating those curves, we required
each photon to have a transverse momentum at least
1 GeV, and we integrated over 4 ≤ Q2 ≤ 30 GeV2,
0 ≤ qT ≤ 1 GeV, and the CS-angles with appropri-
ate azimuthal weightings. For the unpolarized cross sec-
tion (upper panel), the gg → γγ channel dominates at
midrapidity while the qq̄ → γγ channel is more impor-
tant at forward/backward rapidity (|y| > 2) of the pho-
ton pair. The contribution by the gluon BM effect to
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1
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U
/d
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]
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Figure 2: Pair rapidity (y) dependence of the various terms
in the cross sections in Eqs. (8) and (9), for the unpolarized
[top] and single-transversely polarized [bottom] cases, in pp

collisions at
√

S = 500 GeV. For the spin-dependent cross
section we show the absolute value since the sign of the TMDs
is not fixed by the positivity bounds. For comparison we also
show predictions for the unpolarized Drell-Yan process in the
upper panel, without cut on lepton transverse momenta.

the φ-independent cross section turns out to be rather
small. On the other hand, the cos 2φ and cos 4φ contri-
butions induced by gluons could be at the percent level
for TMDs saturated by the positivity bounds. Realisti-
cally, however, one may expect smaller effects depending
on the actual size of the TMDs. In order to estimate
the maximum size of quark Sivers contribution to the
spin-dependent cross section, we kept only the positivity
bound saturated up-quark Sivers function since the up-
and down-quark Sivers function have an opposite sign.
From the lower panel in Fig. 2, it is important to note
that the gluon Sivers effect exceeds the quark Sivers ef-
fect by a factor seven or so at midrapidity, and dominates
the contribution for a wide range of rapidity. That is, the
single transverse spin asymmetry of the diphoton pro-
duction at RHIC could offer excellent opportunities for
exploring the gluon Sivers function. Other effects caused
by the gluon TMDs hg

1T and h⊥,g
1T are negligible.

V. Conclusion.— We have investigated photon pair
production in hadronic collisions in the framework of
TMD factorization. We have shown that this process
may be suited for studying gluon TMDs at RHIC. The
cos(4φ) modulation can be used to extract the gluon
Boer-Mulders function. Even a small effect can be signif-
icant since this modulation is absent in the qq̄-channel.
The cos(2φ) modulation ultimately gives information on

the sign of h⊥g
1 . Such measurements may also be per-

formed at the LHC where the production rate from gluon
fusion is much larger. Another unique feature of the
diphoton process is its sensitivity to the gluon Sivers
function in polarized proton collisions. Measurements
at RHIC could hence provide important clues about the
correlation between gluon motion and hadron spin.
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