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A general method for determining the masses

of semi-invisibly decaying particles at hadron colliders

Konstantin T. Matchev and Myeonghun Park
Physics Department, University of Florida, Gainesville, FL 32611, USA

We present a general solution to the long standing problem of determining the masses of pair-
produced, semi-invisibly decaying particles at hadron colliders. We define two new transverse kine-
matic variables, MCT⊥ and MCT‖

, which are suitable one-dimensional projections of the contrans-
verse mass MCT . We derive analytical formulas for the boundaries of the kinematically allowed
regions in the (MCT⊥ ,MCT‖

) and (MCT⊥ ,MCT ) parameter planes, and introduce suitable variables
DCT‖

and DCT to measure the distance to those boundaries on an event per event basis. We show

that the masses can be reliably extracted from the endpoint measurements of Mmax
CT⊥

and Dmin
CT (or

Dmin
CT‖

). We illustrate our method with dilepton tt̄ events at the LHC.

PACS numbers: 14.80.Ly,12.60.Jv,11.80.Cr

The ongoing run of the Large Hadron Collider (LHC) at CERN will finally provide the first glimpse of physics at
the TeV scale. Complementary and independent arguments from particle physics and astrophysics suggest that the
best place to look for new physics is a channel with missing transverse energy /ET , caused by unseen new particles
contributing to the dark matter of the Universe.
Unfortunately, missing energy signatures pose a tremendous challenge at the LHC, where in each event, the partonic

center-of-mass energy
√
ŝ and longitudinal momentum pz of the initial state are unknown. To make matters worse,

the lifetime of the dark matter particle is typically protected by a new parity symmetry, which guarantees that the
missing particles come in pairs, thus proliferating the number of unknown parameters describing the final state event
kinematics.
The generic topology of a “new physics” /ET event is sketched in Fig. 1. Consider the inclusive production of an

identical pair of new “parent” particles P . Each parent P decays semi-invisibly to a set Vi (i = 1, 2) of standard model
(SM) particles, which are visible in the detector, and a dark matter particle C (from now on referred to as the “child”)
which escapes detection. In general, the parent pair is accompanied by a number of additional “upstream” objects
U (typically jets) with total transverse momentum ~UT . They may originate from various sources such as initial state
radiation or decays of even heavier particles. Given this general setup, the goal is to determine independently the
mass Mp of the parent and the mass Mc of the child in terms of U , V1 and V2.
In the past, several approaches to this problem have been proposed, but each has its own limitations. For example,

the classic method of invariant mass endpoints [1] only applies when the visible SM particles in Vi arise from a
sufficiently long decay chain. Attempts at direct reconstruction [2] of the children momenta are again limited to long
decay chains only. In this letter, we shall consider the extreme, most challenging example where each visible set Vi

consists of a single SM particle of fixed mass mi. A perfect testing ground for this scenario is provided by dilepton tt̄
events (already observed at the LHC [3]) and we shall use that example in our numerical illustrations below. The role
of the parent P (child C) will be played by the SM W -boson (SM neutrino), each Vi is a SM lepton (e or µ), while
U is composed of the two b-jets from the top quark decays, plus any additional QCD jets from initial state radiation
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FIG. 1: The generic event topology under consideration. All particles visible in the detector are clustered into three groups:
upstream objects U with total transverse momentum ~UT , and two composite visible particles Vi (i = 1, 2), each with invariant
mass mi and total transverse momentum ~piT .
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FIG. 2: Decomposition of the observed transverse momentum vectors from Fig. 1 in the transverse plane.

(ISR).
For such extremely short decay chains, the only viable alternative at the moment is provided by the methods based

on the MT2 variable [4]. There, at least in principle, the individual masses Mp and Mc can be determined by observing
a “kink” feature in the MT2 endpoint as a function of a hypothesized trial mass Mc for C [5], or by exploring the
UT dependence of the MT2 endpoint [6]. Compared to those MT2 approaches, our method here has two advantages.
First, it is simpler – it uses only the observed objects U , V1 and V2 in the event and makes no reference to the missing
particle kinematics (or mass). Second, it is more precise, since it utilizes the whole kinematic boundary of the relevant
two-dimensional distribution and not just the kinematic endpoint of its one-dimensional projection. We proceed in
three easy steps.
Step I. Orthogonal decomposition of the observed transverse momenta with respect to the ~UT direction. The Tevatron

and LHC collaborations currently use fixed axes coordinate systems to describe their data. Instead, we propose to
rotate the coordinate system from one event to another, so that the transverse axes are always aligned with the
direction T‖ selected by the measured upstream transverse momentum vector ~UT and the direction T⊥ orthogonal to
it (see Fig. 2). The visible transverse momentum vectors from Fig. 1 are then decomposed as

~piT‖
≡ 1

U2
T

(

~piT · ~UT

)

~UT , (1)

~piT⊥
≡ ~piT − ~piT‖

=
1

U2
T

~UT ×
(

~piT × ~UT

)

. (2)

Step II. Constructing the transverse and longitudinal contransverse masses MCT⊥
and MCT‖

. Our starting point is
the original contransverse mass variable [7] which is invariant under longitudinal Lorentz boosts and rotations with
respect to the beam axis:

MCT =
√

m2
1 +m2

2 + 2 (e1T e2T + ~p1T · ~p2T ), (3)

where eiT is the “transverse energy” of Vi

eiT =
√

m2
i + |~piT |2. (4)

For events with UT = 0, MCT has an upper endpoint which is insensitive to the unknown
√
ŝ, providing one relation

among Mp and Mc [7, 8]

Mmax
CT (UT = 0) =

√

m2
1 +m2

2 + 2m1m2 cosh (ζ1 + ζ2), (5)

where

sinh ζi ≡
λ

1
2 (M2

p ,M
2
c ,m

2
i )

2Mpmi

, (6)

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz . (7)

Unfortunately, the UT = 0 limit is not particularly interesting at hadron colliders (especially for inclusive studies),
since a significant amount of upstream UT is typically generated by ISR (and other) jets. One possible fix is to use all

events, but modify the definition (3) to approximately compensate for the transverse ~UT boost [8]. One then recovers
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a distribution whose endpoint is still given by (5). Alternatively, one could stick to the original MCT variable, and
simply account for the UT dependence of its endpoint as

Mmax
CT (UT ) =

√

m2
1 +m2

2 + 2m1m2 cosh (2η + ζ1 + ζ2) (8)

where ζi were already defined in (6), and

sinh η ≡ UT

2Mp

, cosh η ≡
√

1 +
U2
T

4M2
p

. (9)

Our approach here is to utilize eqs. (1,2) and construct one-dimensional analogues of the MCT variable

MCT⊥
≡

√

m2
1 +m2

2 + 2 (e1T⊥
e2T⊥

+ ~p1T⊥
· ~p2T⊥

), (10)

MCT‖
≡

√

m2
1 +m2

2 + 2
(

e1T‖
e2T‖

+ ~p1T‖
· ~p2T‖

)

, (11)

where the corresponding “transverse energies” are

eiT⊥
≡

√

m2
i + |~piT⊥

|2, eiT‖
≡

√

m2
i + |~piT‖

|2. (12)

The benefit of the decomposition (10,11) is that one gets “two for the price of one”, i.e. two independent and
complementary variables instead of the single variable (3).
The variable MCT⊥

in particular is very useful for our purposes. To illustrate the basic idea, it is sufficient to
consider the most common case, where Vi is approximately massless (mi = 0), as the leptons in our tt̄ example. A
crucial property of MCT⊥

is that its endpoint is independent of UT :

Mmax
CT⊥

=
M2

p −M2
c

Mp

, ∀ UT . (13)

In fact the whole MCT⊥
distribution is insensitive to UT :

dN

dMCT⊥

= N0⊥ δ(MCT⊥
) + (Ntot −N0⊥)

dN̄

dMCT⊥

, (14)

where N0⊥ is the number of events in the zero bin MCT⊥
= 0. Using phase space kinematics, we find that the shape

of the remaining (unit-normalized) zero-bin-subtracted distribution is simply given by

dN̄

dM̂CT⊥

≡ −4 M̂CT⊥
ln M̂CT⊥

(15)

in terms of the unit-normalized MCT⊥
variable

M̂CT⊥
≡ MCT⊥

Mmax
CT⊥

. (16)

Fig. 3a shows the MCT⊥
distribution of the two leptons in our tt̄ sample, for 10 fb−1 of LHC data at 7 TeV. Events

were generated with PYTHIA [9] and processed with the PGS detector simulator [10]. We apply standard background
rejection cuts as follows [3]: we require two isolated, opposite sign leptons with piT > 20 GeV, mℓ+ℓ− > 12 GeV, and
passing a Z-veto |mℓ+ℓ− −MZ | > 15 GeV; at least two central jets with pT > 30 GeV and |η| < 2.4; and a /ET cut
of /ET > 30 GeV (/ET > 20 GeV) for events with same flavor (opposite flavor) leptons. We also demand at least two
b-tagged jets, assuming a flat b-tagging efficiency of 60%. With those cuts, the SM background from other processes
is negligible [3].
Fig. 3a demonstrates that the MCT⊥

endpoint can be measured quite well. Since the theoretically predicted shape
(15) is distorted by the cuts, we use a linear slope with Gaussian smearing, and fit for the endpoint and the resolution
parameter. We find Mmax

CT⊥
= 80.9 GeV (compare to the true value Mmax

CT⊥
= 80.4 GeV), which gives one constraint (13)

among Mp and Mc. At this point, a second, independent constraint can in principle be obtained from an analogous
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FIG. 3: MCT⊥ distributions after cuts, for tt̄ dilepton events. The visible particles Vi are selected to be the two leptons in
(a) and the two b-jets in (b). The yellow (lower) portion is our signal, while the blue (upper) portion shows tt̄ combinatorial
background with isolated leptons arising from τ or b decays.

FIG. 4: Scatter plots of (a) MCT⊥ versus MCT‖
and (b) MCT⊥ versus MCT , for a fixed representative value UT = 75 GeV.

The solid lines show the corresponding boundaries defined in (20) and (23), for the correct value of Mmax
CT⊥

and several different
values of Mp as shown.

measurement of the Mmax
CT endpoint (8) at a fixed value of UT (resulting in loss in statistics), after which the two

masses can be found from

Mp =
UT Mmax

CT (UT )M
max
CT⊥

(Mmax
CT (UT ))2 − (Mmax

CT⊥
)2
, (17)

Mc =
√

Mp

(

Mp −Mmax
CT⊥

)

. (18)

However, the orthogonal decomposition (10,11) offers another approach, which we pursue in the last step.
Step III. Fitting to kinematic boundary lines. It is known that two-dimensional correlation plots reveal a lot more

information than one-dimensional projected histograms [11]. To this end, consider the scatter plot of MCT⊥
vs MCT‖

in Fig. 4a, where for illustration we used 10,000 events at the parton level. For a given value of MCT⊥
, the allowed

values of MCT‖
are bounded by

M
(lo)
CT‖

(MCT⊥
) ≤ MCT‖

≤ M
(hi)
CT‖

(MCT⊥
), (19)

where M
(lo)
CT‖

(MCT⊥
) = 0 and

M
(hi)
CT‖

(MCT⊥
) = Mmax

CT⊥

(

√

1− M̂2
CT⊥

cosh η + sinh η

)

. (20)

Fig. 4a reveals that the endpoint Mmax
CT‖

of the one-dimensional MCT‖
distribution is obtained at MCT⊥

= 0

Mmax
CT‖

= M
(hi)
CT‖

(0) = Mmax
CT⊥

(cosh η + sinh η)

=
1

2

(

1− M2
c

M2
p

)

(
√

4M2
p + U2

T + UT

)

. (21)
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FIG. 5: DCT distributions for four different values of Mp (and Mc given from (18)). The yellow (light shaded) histograms use
only events in the zero bin MCT⊥ = 0. The red solid lines show linear binned maximum likelihood fits.

Notice that events in the zero bins MCT⊥
= 0 and MCT‖

= 0 fall on one of the axes and cannot be distinguished on
the plot.
Now consider the scatter plot of MCT⊥

vs MCT shown in Fig. 4b. MCT is similarly bounded by

M
(lo)
CT (MCT⊥

) ≤ MCT ≤ M
(hi)
CT (MCT⊥

), (22)

where this time M
(lo)
CT (MCT⊥

) = MCT⊥
and

M
(hi)
CT (MCT⊥

) = Mmax
CT⊥

(

cosh η +
√

1− M̂2
CT⊥

sinh η

)

. (23)

We see that the endpoint Mmax
CT of the one-dimensional MCT distribution is also obtained for MCT⊥

= 0:

Mmax
CT = M

(hi)
CT (0) = Mmax

CT⊥
(cosh η + sinh η) = Mmax

CT‖
. (24)

Fig. 4 reveals a conceptual problem with one-dimensional projections. While all points in the vicinity of the
boundary lines (20) and (23) are sensitive to the masses, the Mmax

CT⊥
endpoint is extracted mostly from events with

MCT⊥
∼ Mmax

CT⊥
, while the Mmax

CT‖
and Mmax

CT endpoints are extracted mostly from the events with MCT⊥
∼ 0. The

events near the boundary, but with intermediate values of MCT⊥
, will not enter efficiently either one of these endpoint

determinations.
So how can one do better, given the knowledge of the boundary line (23)? In the spirit of [12], we define the signed

distance to the corresponding boundary, e.g.

DCT (Mp,Mc) ≡ M
(hi)
CT (MCT⊥

, UT ,Mp,Mc)−MCT

and similarly for DCT‖
. The key property of this variable is that for the correct values of Mp and Mc, its lower

endpoint Dmin
CT is exactly zero (see Fig. 5b):

Dmin
CT (Mp,Mc) = 0, (25)

and the boundary line (23) provides a perfectly snug fit to the scatter plot — notice the green boundary line marked
“80” in Fig. 4b. While in general eq. (25) represents a two-dimensional fit to Mp and Mc, in practice one can already
use the Mmax

CT⊥
measurement from Fig. 3a to reduce the problem to a single degree of freedom, e.g. the parent mass

Mp, as presented in Figs. 4 and 5. The correct choice of parent mass Mp = 80 GeV provides a perfect envelope in
Fig. 4b, resulting in Dmin

CT = 0 in Fig. 5b. If, on the other hand, Mp is too low, a gap develops between the outlying
points in the scatter plot of Fig. 4b and their expected boundary (23), which results in Dmin

CT > 0, as illustrated in
Fig. 5a. Conversely, if Mp is too high, some of the outlying points from the scatter plot fall outside the boundary (23)
and have DCT < 0, leading to Dmin

CT < 0, as seen in Figs. 5c and 5d. The resulting fit for Dmin
CT as a function of Mp
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from our PGS data sample is shown in Fig. 6, suggesting that a W mass measurement at the level of a few percent
might be viable.
The method can also be used to measure the top quark mass itself. To this end, all one needs to do is to select

Vi = b as the visible particles of Fig. 1. The resulting MCT⊥
distribution is shown in Fig. 3b. Fitting its endpoint

as before, we obtain 136.78+2.97
−4.04 GeV (to be compared with the true value of 138.20 GeV). Since the b-jet has some

non-negligible mass, we cannot use (13), but instead need to go back to (8) and set η = 0, since by construction the

component of ~UT along T⊥ is zero. We obtain a measurement of the top mass as 173.83+2.45
−3.32 GeV, to be contrasted

with the nominal value of 175 GeV used in our simulations.
Acknowledgments. This work is supported in part by a US Department of Energy grant DE-FG02-97ER41029.
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