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We consider two SUSY-breaking hidden sectors which decouple when their respective couplings to
the visible particles are switched off. In such a scenario one expects to find two light fermions:
the Goldstino and the pseudo-Goldstino. While the former remains massless in the rigid limit, the
latter becomes massive due to radiative effects which we analyze from several different points of
view. This analysis is greatly facilitated by a version of the Goldberger-Treiman relation, which
allows us to write a universal non-perturbative formula for the mass. We carry out the analysis
in detail in the context of gauge mediation, where we find that the pseudo-Goldstino mass is at
least around the GeV scale and can be easily at the electroweak range, even in low scale models.
This leads to interesting and unconventional possibilities in collider physics and it also has potential
applications in cosmology.

Introduction and Summary.—In this note we consider
models with multiple supersymmetry-breaking sectors.
We assume these SUSY-breaking sectors communicate
only through their respective couplings to the Super-
symmetric Standard Model (SSM). In other words, the
SUSY-breaking sectors decouple when their respective
couplings to the SSM are set to zero. Such models could
naturally appear in string theory, where there may be
several independent sources of supersymmetry breaking.
They may also arise naturally in the study of quiver
gauge theories. Our main objective is to study the var-
ious field-theoretic effects that are relevant in such a
setup.

One may wonder whether having such SUSY-breaking
sectors which interact only indirectly through the SSM is
natural. Indeed, in field theory this can be perfectly nat-
ural since renormalizable contact terms may be forbidden
by gauge invariance or global symmetries.

At zeroth order in the interactions with the SSM, there
are obviously many massless Goldstini particles. Turn-
ing on the small couplings to the SSM, one linear com-
bination, the true Goldstino, remains massless, while the
other linear combinations get masses from tree-level and
radiative effects. Denoting f =

√

(fA)2 + (fB)2, then
the physical Goldstino and pseudo-Goldstino are given
by

fG = fAGA + fBGB , fG′ = −fBGA + fAGB (1)

First, consider the problem from the point of view of
the universal chiral Lagrangian for spontaneously broken
supersymmetry. We assume two hidden sectors, repre-
sented by the Goldstino superfields XA and XB, con-

tribute in some way to the soft gaugino mass

L =
mλ

2

∫

d2θ

(

αA

fA
XA +

αB

fB
XB

)

W 2
α (2)

Note that αA + αB = 1 by definition of mλ. The chiral
Lagrangian approach shows that the contribution from
deep low momenta is quadratically sensitive to the cutoff
ΛUV of the chiral Lagrangian

mG′ ∼ 1

16π2

m3
gaugino

f2
Λ2

UV (3)

Hence, the contribution is not dominated by parameter-
ically small momenta and one has to invoke the detailed
microscopic physics to determine the mass. One can nev-
ertheless show that (3) dominates over tree-level contri-
butions that arise due to electroweak symmetry breaking.

As an example of a microscopically well-defined setup
we will analyze in detail two hidden sectors which only
communicate with the SSM via gauge interactions. In
this case we will find that if the two sectors have a
common messenger scale and comparable SUSY-breaking
scales, one can roughly estimate the mass of the pseudo-
Goldstino mG′ as ∼1 GeV. On the other hand, we may
consider, for instance, different SUSY-breaking scales
for the two sectors, then mG′ can be easily as high as
∼100 GeV.

It follows that our field theory effects surely dominate
over gravity as long as m3/2 ∼ F/MPL is smaller than

a GeV or so. This means
√

f ≤ 109, which covers in
entirety the parameter space of models based on gauge
mediation and variations thereof. On the other hand,
since the field theoretic effects can be easily as large as
100 GeV, it may be important to take them into account
even in the regime of gravity mediation.



2

A BSSM

FIG. 1: Two SUSY-breaking theories communicating with
the SSM via gauge interactions.

Having such heavy Goldstino-like particles in control-
lable low scale models potentially leads to unconventional
signatures in collider physics and cosmology. Decays of
SSM particles sometimes proceed predominantly into the
pseudo-Goldstino and may or may not be accompanied
by displaced vertices. In addition, the pseudo-Goldstino
has three-body decays with observationally interesting
time scales.

A recent inspiring paper [1] (see also the earlier
work [2]) considers situations where the gravitational ef-
fects are significant. Consistency of SUGRA Lagrangians
demands the existence of universal non-renormalizable
contact terms mixing the various sectors. Assuming that
this is the only source for mixing between the sectors,
the authors of [1] computed the supergravity contribu-
tion to the mass of the pseudo-Goldstino. They found
that the induced mass is 2m3/2. Possible corrections to
this result have been studied in [3] and various interest-
ing applications of this scenario are discussed in [4–6]. In
this note we consider theories in the rigid limit, where
these supergravity corrections are negligible.

Hidden Sectors Communicating with the SSM by

Gauge Interactions.—The setup we opt to focus on is
depicted in Fig.1. We consider two SUSY-breaking theo-
ries, labeled A and B, which communicate with the SSM
via gauge interactions. More precisely, when the SSM
gauge couplings are set to zero, the sectors A, B decou-
ple from each other. These decoupled theories have some
global symmetry groups in which the SSM gauge group
can be embedded and weakly gauged.

In essence, this is the setup of General Gauge Media-
tion (GGM) [7], only that the hidden sector is assumed to
consist of two decoupled field theories. When the gauge
couplings are turned on, the two sectors can communi-
cate by exchanging SSM fields. Obviously, at the zeroth
order in the gauge couplings, there are two exactly mass-
less Goldstini fermions. Our goal is to find the leading
nonzero contribution in an expansion in the gauge cou-
plings.

The mass matrix for the Goldstini system, defined by
− 1

2GiMijG
j with a symmetric matrix M, is constrained

to have one zero eigenvector corresponding to the true
Goldstino (1). Therefore, the matrix has to be of the
form

M =

(

− fB

fA MAB MAB

MAB − fA

fB MAB

)

(4)

Once we have calculated MAB, the mass of the pseudo-

+
GA(p=0) GB(p=0) GA(p=0) GB(p=0)

FIG. 2: At order g4 the sectors A and B can communicate via
two intermediate SSM fields. We must also add the diagrams
with the gauginos flowing in the opposite direction.

Goldstino is determined via

mG′ =
(fB

fA
+

fA

fB

)

MAB (5)

Our goal is therefore to compute the first nontrivial
contribution to MAB in an expansion in the gauge cou-
plings. The processes contributing to MAB consist of
GA transforming into GB via some intermediate hidden
sector and SSM fields.

It turns out that we must consider processes of order
g4. These allow for two intermediate SSM fields and are
thus messenger parity invariant. The intermediate fields
must be a gaugino and a gauge field or alternatively a
gaugino and a D auxiliary field. This is summarized in
Fig.2.

In the absence of any particular detailed knowledge of
the hidden sector we must account for the blobs formally.
On the other hand, if the theory is specified and it is
weakly coupled, the blobs can be computed in perturba-
tion theory. For instance, in Minimal Gauge Mediation
(MGM) the blobs are, to leading order, triangles with vir-
tual messenger fields. Therefore, the pseudo-Goldstino
obtains a mass due to three-loop corrections.

In the processes of Fig.2 the external Goldstini are
at zero momentum. One can interpret the blobs as
three-point functions of the supercurrent and two in-
sertions of operators of the linear current multiplet.
In other words, the pertinent correlation functions
are of the form 〈Sνα(x)jµ(y)j̄α̇(z)〉, 〈Sνα(x)J(y)j̄α̇(z)〉,
〈Sνα(x)jµ(y)jβ(z)〉, 〈Sνα(x)J(y)jβ(z)〉. For our purposes
we need the external state to be a zero-momentum Gold-
stino, hence, the correlation functions above should be
studied only in the limit of large x (much larger than
any other scale in the problem).

In this large x limit the three-point functions above
simplify dramatically. The reason is that at very low
energies the supercurrent flows to the Goldstino parti-
cle SA,B

µα ∼ fA,Bσµαα̇ḠA,Bα̇ and therefore the large x
limit corresponds to inserting a zero momentum Gold-
stino in the correlation function. This is the same as
acting with the supercharge on the vacuum and thus
these three-point functions are related to two-point func-
tions of the form 〈[Q̄γ̇ , jµ(y)j̄α̇(z)]〉, 〈[Q̄γ̇ , J(y)j̄α̇(z)]〉,
〈[Q̄γ̇ , jµ(y)jβ(z)]〉, 〈[Q̄γ̇ , J(y)jβ(z)]〉. These two-point
functions, in turn, appear in the calculations of soft
masses in gauge mediation. We adopt notation similar
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to the one in GGM [7]

〈JA,B(p)J(−p)A,B〉 = CA,B
0 (p2) ,

〈jA,B
α (p)j̄A,B

α̇ (−p)〉 = −σµ
αα̇pµCA,B

1/2 (p2) ,

〈jA,B
µ (p)jA,B

ν (−p)〉 = −
(

p2ηµν − pµpν

)

CA,B
1 (p2) ,

〈jA,B
α (p)jA,B

β (−p)〉 = ǫαβBA,B
1/2 (p2)

(6)
The discussion above shows that the leading order con-

tribution to the pseudo-Goldstino mass should be cap-
tured by the functions in (6). A quick way to derive the
precise relations between these two-point functions and
three-point functions is to start by recalling the effective
quadratic action for the vector multiplet

1
g2Leff = 1

2CA
0 D2 − iCA

1/2λσµ∂µλ̄ − 1
4CA

1 FµνFµν

− 1
2

(

BA
1/2λλ + c.c.

)

+ A ↔ B

(7)
This breaks supersymmetry if B1/2 6= 0 and if the Cs are
not all equal. However, it can be supersymmetrized by
adding terms linear in the Goldstino as follows

1
g2Lone−G

eff = 1√
2fA

(

CA
0 − CA

1/2

)

GAσµ∂µλ̄D

+ i√
2fA

(

CA
1 − CA

1/2

)

GAσν∂µλ̄Fµν

+
iBA

1/2√
2fA

(

GAλD − i
2λσµσ̄νGAFµν

)

+A ↔ B

(8)

To make the theory fully supersymmetric, in addition
to (8), we need to add terms bilinear in the Goldstini,
and terms with derivatives acting on the Goldstini. In
order to compute MAB, (8) suffices. The procedure we
have invoked here is a supersymmetric reincarnation of
the Goldberger-Treiman relation.

From here to derive the mass of the pseudo-Goldstino
we only need to carry out the contractions using the ver-
tices in (8). After the dust settles, we find that the lead-
ing order contribution to the mass of the pseudo Gold-
stino is

mG′ = g4

2

(

1
(fA)2 + 1

(fB)2

)

·
∫

d4p
(2π)4 BA

1/2

(

CB
0 − 4CB

1/2 + 3CB
1

)

+ A ↔ B
(9)

Note that the combination of the C functions in the in-
tegrand is precisely the one appearing in the formula for
the soft scalar mass in gauge mediation. The discussion
in [8] shows that C0 − 4C1/2 + 3C1 behaves at most like

1/p4 at large momentum and it is also possible to prove
that B1/2 scales at most like 1/p at large momentum.
Consequently, the integral is UV convergent.

The computation above has been greatly simplified by
the structure of the matrix (4), which allowed us to com-
pute mG′ only in terms of MAB. As a consistency check,
we can also compute the diagonal elements of the mass
matrix MAA and MBB. In order to do this one must
take into account also the corrections to (8) quadratic in
each of the Goldstini.

We can now estimate (9) crudely. Assume both hidden
sectors have some typical supersymmetric scale M and
the SUSY-breaking scales are fA, fB. To leading order
in the SUSY-breaking scales we would get

mG′ ∼ g4

(16π2)3

(

fA

fB
+

fB

fA

)(

fA

M
+

fB

M

)

. (10)

If the two SUSY-breaking scales are comparable this
leads to the estimate

mG′ ∼ g4

(16π2)3
f

M
∼ g2

(16π2)2
msoft ∼ 1 GeV . (11)

We have included a factor of O(10) due to the sum over
the gauge sector of the SSM.

However we can also entertain other possibilities. For
instance, consider a situation where the fundamental su-
persymmetric scales in the two sectors are comparable
but the SUSY-breaking scales are different. To be con-
crete we assume that fA ≫ fB (the soft parameters
thus mostly originate in sector A). In this case, the for-
mula (10) predicts an enhancement of mG′ by fA/fB.
This ratio, however, cannot be arbitrarily large because
at some point the backreaction of the SSM on the hid-
den sector B becomes too large and our formalism breaks
down. By computing the sGoldstino VEV in sector B,
we can estimate that the backreaction is surely tame for
fA/fB ≪ 103. (For this estimate we have assumed the
mass of the sGoldstini is around fA,B/M .) Thus, we
can easily imagine the pseudo-Goldstino picking a mass
at the electroweak range. Note that such a (perhaps sur-
prisingly) large mass for the pseudo-Goldstino is achieved
effortlessly and ubiquitously in low scale models, where
corrections from supergravity are completely negligible.

One can also evaluate (9) explicitly in a variety of sim-
ple realizations of gauge mediation, for instance, if the
two hidden sectors are copies of MGM.

Phenomenology of Goldstini.—In the scenario pre-
sented in this note, the pseudo-Goldstino is generically
the Next-to-Lightest Supersymmetric Particle (NLSP),
with the LSP being of course the very light gravitino.
The pseudo-Goldstino is not stable and its decay can be
analyzed via the chiral Lagrangian. For instance, the
terms responsible for the gaugino mass (2) give rise to
vertices of the form ∼ Gσµσ̄νλFµν which induce three-
body decays of the pseudo-Goldstino into two photons
and the true Goldstino. There are also some very im-
portant vertices with two Goldstini. In fact, the naive
estimate based on dimensional analysis fails due to an
exact cancellation between the different vertices. An
analogous story takes place in the couplings to the SM
fermions. One is left with the following estimate of the
decay width into two standard model fermions and the
true Goldstino [5]

ΓG′→Gff̄ ∼ m9
G′

105f4
eff

(

(mA
f̃
)2 tan θ − (mB

f̃
)2 cot θ

m2
f̃

)2

.

(12)
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We denote tan θ = fB/fA and (mA,B

f̃
)2 are the contribu-

tions to the mass of the slepton from the two hidden sec-
tors, such that (mA

f̃
)2 + (mB

f̃
)2 = m2

f̃
. There is a similar

width to decay into two photons and the true Goldstino.
Consider theories with two general SUSY-breaking

scales fA ≥ fB. Assuming again, for simplicity, that
the messenger scales in the two sectors are comparable

and taking mA,B

f̃
∝ fA,B/M we find

τ ∼ 1021 sec

(

feff

1010 GeV2

)4(
fB

fA

)7

. (13)

To derive the estimate above we have taken the mass of
the pseudo Goldstino to be mG′ ∼ fA/fB GeV. This
gives rise to many different possibilities. For instance,
when the pseudo-Goldstino is around the weak or TeV
scale (i.e. fA/fB ∼ 102−3) models of low scale mediation√

f ∼ 104−5 GeV give a lifetime of the order of a few
seconds. Still keeping the pseudo-Goldstino at the weak-
TeV scale, we can also choose

√

feff ∼ 108 GeV which

leads to lifetimes of the order of 1023−24 secs. Both of
these time scales have potentially interesting observable
consequences [9]. One can of course imagine many other
scenarios stemming from (13), including scenarios with
lighter pseudo-Goldstino.

One can also easily imagine many unconventional col-
lider manifestations of the setup here. One obvious
consequence of having two different hidden sectors is
that the relation between the decay time of the Lightest
Observable-sector Supersymmetric Particle (LOSP) and
the scale of SUSY breaking is no longer universally de-
termined. This can have several different consequences.

For instance, consider two hidden sectors with compa-
rable messenger scales but with a possible hierarchy in
the SUSY breaking scales. From the couplings (2) we
see that the gaugino is equally likely to decay to either
of the Goldstini (since the dependence on f cancels and

only the supersymmetric scale remains). Therefore, if
the LOSP is bino- or wino-like, and it is heavier than the
pseudo-Goldstino, many of the processes of the SSM will
terminate in a heavy, long lived, pseudo-Goldstino (the
decay can be prompt or there can be displaced vertices).
This also comes accompanied by an isolated photon from
the last step of the decay. Having such an invisible heavy
particle as missing energy is clearly different from con-
ventional scenarios of gauge mediation where the missing
energy is carried away by practically massless objects. It
is also distinguishable from gravity mediation, where the
LOSP is stable on collider time scales and therefore, if it
is a gaugino, no isolated photons are expected.

The very brief remarks above are just to demonstrate
that unusual collider and cosmological signatures are def-
initely possible. Clearly, it will be interesting to investi-
gate the various possibilities further. It is also important
to study more general hidden sector paradigms, beyond
gauge mediation.
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