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Abstract

We present the theory of an extremely correlated Fermi liquid with U →∞. This liquid has an

underlying auxiliary Fermi liquid Greens function that is further caparisoned by extreme correla-

tions. The theory leads to two parallel hierarchies of equations that permit iterative approximations

in a certain parameter. Preliminary results for the spectral functions display a broad background

and a distinct T dependent left skew. An important energy scale ∆(~k, x) emerges as the average

inelasticity of the FL Greens function, and influences the photoemission spectra profoundly. A

duality is identified wherein a loss of coherence of the ECFL results from an excessively sharp FL.
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Introduction Correlated electron systems attract two distinct approaches. An interme-

diate to strong coupling approach is used when the interaction U is comparable to the band

width 2W , and has seen some success in recent times[1]. On the other hand, Anderson[2] has

argued that myriad experiments on high Tc superconductors require a better understand-

ing of the t-J model physics. This model sets U → ∞ right away i.e. leads to extreme

correlations and involves Gutzwiller projected Fermi operators that are non canonical.

Thus Wick’s theorem is immediately lost, and perturbative schemes encoding the Feynman

Dyson approach become useless. Since this approach is at the root of most current many

body physics text books, the task of understanding the t-J model is not lightly undertaken.

The Schwinger approach to interacting field theories is a powerful and attractive alterna-

tive. It is fundamentally non perturbative, where Wick’s theorem is bypassed by dealing with

suitable inverse Greens functions. Conventional many body theory for canonical Fermions

can also be cast into this approach, and leads to the standard results. In Ref. 3 (henceforth

I), the author has recently applied the Schwinger method to the t-J model, and found a

class of solutions that are termed as extremely correlated quantum liquids. That state is

presumably realized under suitable conditions. However it gives a Fermi surface (FS) vol-

ume that is always distinct from that of the Fermi gas. This is contrast to the case of Fermi

liquids (FL), where the important theorem of Luttinger and Ward (L-W) [4, 5] mandates

the invariance of the FS volume under interactions.

In this paper we propose a state of matter termed as an extremely correlated Fermi liquid

(ECFL). The ECFL found here, represents an alternate class of solutions for the t-J model,

where the Fermi surface satisfies the Fermi gas (i.e. L-W) volume. In this work we present

the essentials of the formalism, and display preliminary results on spectral functions that are

suggestive of the relevance of the ECFL state to cuprate materials. An inherent flexibility

of the Schwinger approach permits the construction of an alternate class of solutions from

the one found in I. The excitations of the ECFL state may be thought of as bare electrons

undergoing a double layer of renormalization: the FL dressing into quasiparticles that are

further caparisoned (i.e. decorated) by extreme correlations.

Formalism: The physical projected electronic Greens function G satisfies an equation

2



of motion (EOM) (I-29) written compactly in matrix form as

(∂τi − µ)G(i, f) = −δ(i, f) {1− γ(i)} − Vi · G(i, f)

−X(i, j̄) · G (̄j, f)− Y (i, j̄) · G (̄j, f), (1)

where µ is the chemical potential and an implicit integration over space time variables such

as j̄, written with bold overlined letters, is implied,

X(i, j) = −t(i, j) (D(i) +D(j)) +
1

2
J(i, k̄) (D(i) +D(k̄))δ(i, j)

Y (i, j) = −t(i, j) (1− γ(i)− γ(j)) +
1

2
J(i, k̄) (1− γ(i)− γ(k̄))δ(i, j). (2)

In the above expression[6], we used γ(i) = Gk(i, i) with the k conjugation defined by

(Mk)σ1σ2 = Mσ̄2σ̄1σ1σ2, and Dσ1σ2(i) = σ1σ2
δ

δV σ̄1σ̄2
i

. The added (Bosonic) source term

Vσ1σ2
i (τi) is central to this approach; it is a space-time dependent field that couples to the

charge and spin densities through a term in the action:
∑

iσ

∫ β
0
dτ Vσ1σ2

i (τ) Xσ1σ2
i (τ), where

Xσ1σ2
i is the spin and density operator at site i that acts as |σ1〉〈σ2| .

An important technical problem highlighted in I is to deal with the time dependence of

the γ(i) term in Eq. (1) which makes the theory non canonical. Here we use the decompo-

sition into two factors [7] :

G(a, b) = g(a, b̄) · µ(b̄, b), (3)

and express γ(i) = (g(i, j̄) · µ(̄j, i))k. The object g is an auxiliary FL Greens function and

µ(b̄, b) is an appurtenant (or supplementary) factor that is determined below. Antiperiodic

boundary conditions G(0, τf ) = −G(β, τf ) and G(τi, 0) = −G(τi, β) imply that both factors g

and µ are Fourier transformed using Fermionic Matsubara frequencies. We define the inverse

Greens function g−1(a, b̄) · g(b̄, b) = 1δ(a, b), and thence a vertex function Λσ1σ2
σ3σ4

(p, q; r) =

− δ
δVσ3σ4
r
{g−1

σ1σ2
(p, q) }. Thus g, µ and g−1 are matrices in the spin space, and the vertex Λ

has four indices. We also define a linear operator

L(i, f) =

(
t(i, j̄) ξ∗ · g(̄j, f)− 1

2
J(i, j̄) ξ∗ · g(i, f)

)
·

(
δ

δV∗i
+

δ

δV∗
j̄

)
, (4)

where the matrix ξ∗σ1σ2
= σ1σ2. The ∗ is used as a place holder that transmits the spin indices

(after conjugation) of the ξ matrix to the source matrix V in the functional derivative. This

notation used is illustrated in component form by · · · ξ∗σaσb · · · δ/δV
∗
j̄

= · · ·σaσb · · · δ/δV σ̄a,σ̄bj̄
.
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A useful chain rule for the functional derivative is noted

D(r) · G(a, b) = ξ∗ · g(a, c̄) · Λ∗(c̄, d̄; r) · G(d̄, b)

+ξ∗ · g(a, b̄) ·
(

δ

δV∗r
µ(b̄, b)

)
(5)

Using this chain rule, we see that

X(i, j̄) · G (̄j, f) ≡ Φ(i, b̄) · G(b̄, f) + Ψ(i, f) (6)

where

Φ(i,m) = L(i, ī) · g−1(̄i,m)

Ψ(i,m) = − L(i, ī) · µ(̄i,m) (7)

Thus the two fundamental functions of this formalism Φ,Ψ are closely connected as they

arise from applying the same operator to the two factors of G. Defining Y0(i, j) =(
−t(i, j) + 1

2
J(i, k̄) δ(i, j)

)
1, and Y1(i, j) = t(i, j) (γ(i)+γ(j))− 1

2
δ(i, j) J(i, k̄) (γ(i)+γ(k̄)),

also denote the Fermi gas Greens function

g−1
0 (i, f) = {−(∂τi − µ)1− Vi)δ(i, f)− Y0(i, f)}. (8)

Collecting everything, the exact EOM can now be written neatly as

{g−1
0 (i, j̄)− λ Y1(i, j̄)− λ Φ(i, j̄)} · g(̄j, f̄) · µ(f̄ , f)

= δ(i, f) (1− λ γ(i)) + λ Ψ(i, f). (9)

We have introduced the parameter λ above, with 0 ≤ λ ≤ 1, in order to provide an adiabatic

path between the Fermi gas at λ = 0 and the ECFL at λ = 1, and also an iterative scheme

in powers of λ connecting the two endpoints.

We now choose the hitherto undetermined function µ as:

µ(i, f) = δ(i, f) (1− λ γ(i)) + λ Ψ(i, f), (10)

so that Eq. (9) reduces to a canonical FL type equation:

{g−1
0 (i, j̄)− λ Y1(i, j̄)− λ Φ(i, j̄)} · g(̄j, f) = δ(i, f). (11)

Notice that the right hand side has a pure δ function as in a canonical Fermi liquid type

theory. To summarize, the EOM Eq. (1) under the decomposition Eq. (3) leads to Eq. (9).
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In turn this splits exactly into two coupled sets of equations Eq. (7), Eq. (10) and Eq. (11)

for the two factors g and µ. Note that the entire procedure is exact, we write explicit forms

of these equations below and then introduce approximate methods to solve them .

Inverting we find Dyson’s equation for the auxiliary FL Greens function:

g−1(i,m) = {g−1
0 (i,m)− λ Y1(i,m)− λ Φ(i,m)}. (12)

Taking functional derivatives of Eq. (10) and Eq. (12) w.r.t. V , and comparing with Eq. (4)

and Eq. (7) we generate two parallel hierarchies of equations for g and µ that form the core of

this formalism. The hierarchy for g is essentially autonomous and drives that for µ. Starting

with the Fermi gas at O(λ0), an iterative process similar to the skeleton graph expansion

of L-W[4] can be built up, such that terms of O(λn) arise from differentiating lower order

terms of O(λn−1). Systematic approximations may thus be arranged to include all terms of

O(λn) for various n[8]. The number of particles is given by 1
2
n(i) = g(i, ī) · µ(̄i, i), and with

Uσ1σ2
σ3σ4

(a, b; c) ≡ δµσ1σ2(a, b)

δVσ3σ4
c

, (13)

the equations to solve simultaneously are Eq. (7), Eq. (12) and Eq. (10). The density

and spin density response functions (I-F1,I-F-7) can be found from differentiating G i.e.

Υσ1σ2
σ3σ4

(p, q; r) = δ
δVσ3σ4
c

{Gσ1σ2(p, q)} .

Zero source limit in Fourier space: When we turn off the source V , the various

matrix function G,g, µ become spin diagonal and translation invariant so we can Fourier

transform these conveniently. We note the basic result expressing G as a simple product of

two functions in k space:

G(k) = g(k) µ(k), µ(k) = 1− λ n

2
+ λ Ψ(k)

g−1(k) = iωk + µ− εk(1− λ n)− λ Φ(k) (14)

where εk is the Fourier transform of the hopping matrix −t(i, j), and an uninteresting

constant term is absorbed in µ here and below.

Here g plays the role of an underlying auxiliary FL with a self energy Φ, and Ψ acts as an

extra spectral weight that vanishes at high frequency, leaving the exact weight 1 − n
2

valid

for a projected electron (as in I) for λ = 1. Denoting
∑

k →
1

Ns β

∑
iωk,~k

with Ns sites, the

particle number sum rule is
∑

k µ(k)g(k) = n
2
, i.e.

n

2
=
∑
k

g(k) + λ
∑
k

(Ψ(k)− n

2
) g(k). (15)
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In this formalism, at k ∼ kF , x = 0 that is relevant to the L-W sum rule, the <e g(k)

dominates <e G(~k, 0) (since <e Ψ(~k, 0) is smooth through the FS). Requiring consistency

with the L-W theorem forces us to pin any sign change of <e g(~k, 0) to the free case, whereby

we impose a second level sum rule∑
k

Ψ(k) g(k) =
n2

4
, and

∑
k

g(k) =
n

2
. (16)

This can be viewed as a splitting of the usual number sum rule Eq. (15) [9]. With E(p1, p2) =(
εp1 + εp2 + 1

2
Ĵ(0) + 1

2
Ĵ(p1 − p2)

)
we find

Φ(k) =
∑
p

E(k, p) g(p) Λ(a)(p, k)

Ψ(k) =
∑
p

E(k, p) g(p) U (a)(p, k) (17)

and the spin labels are from I with the usual significance Λ(a) = Λ(2)−Λ(3) = 1
2
Λ(s)− 3

2
Λ(t).

Next we introduce the spectral representation of various functions Q that vanish at in-

finity: Q(iωQ) =
∫∞
−∞ dx

ρQ(x)

iωQ−x
and ρQ(x) = − 1

π
=m Q(x + i0+), with x+ ≡ x + i0+. The

Matsubara frequency ωQ is Fermionic (Bosonic) if Q is Fermionic (Bosonic). Proceeding

further, at any order in λ, the two hierarchies give us coupled equations for the spectral

densities of the physical particles ρG(~k, x) as well as the underlying Fermi liquid ρg(~k, x), in

terms of the two objects ρΦ̄(~k, x) and ρΨ(~k, x) and their Hilbert transforms. The Lehmann

representation implies that ρG(~k, x) is positive at all ~k, x. In making approximations, this

important and challenging constraint must be kept in mind.

Solution of g−1 and µ to order O(λ)2: We next discuss a systematic expansion in

powers of λ [8], obtained by taking functional derivatives of Eq. (10) and Eq. (12) to generate

expressions for the vertices given the Greens functions via Λ ∼ − δ
δVg

−1 and U ∼ δ
δVµ. To

lowest order in λ , the bare vertex Λ(a) = −1, this term is absorbed in a renormalization of

the band dispersion to εk in Eq. (14) [10] , and the remaining term denoted by Φ̄(k). To

this order U (a) = 0. Proceeding to the next non trivial order in λ, by taking the functional

derivative of Eq. (10) and Eq. (12) we find after a brief calculation:

Ψ(k) = −2λ
∑
p,q

E(k, p) g(p) g(q) g(q + p− k)

Φ̄(k) = −2λ
∑
p,q

E(k, p) (E(p, k) + E(q + p− k, p))

g(p) g(q) g(q + p− k). (18)
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From Eq. (14) we note that these expressions Eq. (18) lead to a calculation of g−1 and

µ correct upto O(λ2). Frequency dependent corrections arise only to second order in λ,

which is analogous to the structure of the canonical many body theory within the skeleton

graph expansion. We may now set λ = 1 and study the resulting theory as the first step in

exploring this formalism.

Denote f(x) = 1
(expβx)+1

as the Fermi distribution functions and f̄(x) = 1 − f(x) , and

denote the usual Fermi factors from second order theory

W =
{
f(u)f(w)f̄(v) + f(v)f̄(u)f̄(w)

}
δ(u+ w − v − x),

a function of the frequencies u, v, w, x, and

Y =

∫
u,v,w

W ρg(~q, w)ρg(~p, u)ρg(~q + ~p− ~k, v), (19)

a function of ~k, ~p, ~q and x. We may then write the spectral functions corresponding to

Eq. (18)

ρΦ̄(~k, x) = 2
∑
~p,~q

E(~k, ~p)
(
E(~p,~k) + E(~q + ~p− ~k, ~p)

)
Y

ρΨ(~k, x) = 2
∑
~p,~q

E(~k, ~p) Y . (20)

The functions appearing in Eq. (20) are familiar from Fermi liquids[4, 5], and encode the

usual phase space constraints of that theory. This leads to the low temperatures behaviour

∼ max {x2, (πkBT )2}, for both objects =m Ψ(k, x, T ) and =m Φ̄(k, x, T ). The real parts of

these objects are smooth through the Fermi surface, as one expects from the real part of the

self energy in a FL, and hence motivates the second level sum rule Eq. (16).

From Eq. (14) we write the exact expression for the physical spectral function ρG:

ρG(~k, x) = ρg(~k, x)

({
1− n

2

}
+

ξk − x
∆(~k, x)

+ η(~k, x)

)
, (21)

where ξk = ε̂k − µ, and the important energy scale ∆(~k, x) and the term η is defined as:

∆(~k, x) = −ρΦ̄(~k, x)

ρΨ(~k, x)
, (22)

η(~k, x) = <eΨ(~k, x+) +
1

∆(~k, x)
<eΦ(~k, x+). (23)
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The sign of the energy scale ∆ in Eq. (22) is expected to be positive from Eq. (20). The

dimensionless term η augments the spectral weight at the Fermi level. The equations nec-

essary to solve the theory to O(λ2) may be summarized as Eq. (14), Eq. (16), Eq. (18) and

Ref. (10) giving rise to the spectral function Eq. (21). These require further numerical work

that is underway, it leads to spectral functions in 2 and 3 dimensions that will be published

separately. However it also provides a very interesting insight about the theory in high

dimensions that is pursued analytically next.

Solution in high dimensions: In sufficiently high dimensions, we show next that the

dimensionless term η vanishes identically leading to a great simplification. For sufficiently

high dimensions we can ignore the momentum dependence of Y in Eq. (19) and assume

ρΦ(~k, x) ∼ CΦ σ(x), and ρΨ̄(~k, x) ∼ CΨ σ(x), as functions of frequency only. Here σ(x)

extends over energy range ωc ∼ O(2W ), and CΦ has dimensions of inverse energy and is

positive due to ρΦ̄. Its Hilbert transform is called h(x) ≡ P
∫
dy σ(y)

x−y . We use an analytically

tractable Fermi liquid model[11] with τ = πkBT , where we set:

σ(x) = {x2 + τ 2}e−CΦ{x2+τ2}/ωc . (24)

The peak value of CΦ σ(x) is of O(1) and independent of CΦ [12]. The other constant CΨ is

dimensionless and negative. To complete the model, we note that the real parts are given

in terms of h(x) as <e Φ̄(x+) = CΦ h(x) and <eΨ(x+) = CΨ h(x). With this choice the

auxiliary spectral weight η(k, x) vanishes identically in Eq. (23). With Γ(x) ≡ πCΦ σ(x)

and ε(ξ, x) ≡ (x− ξ − CΦ h(x)) we may write ρg(ξ, x) = 1
π

Γ(x)
Γ2(x)+ε2(ξ,x)

and <e g(ξ, x) =

ε(ξ,x)
Γ2(x)+ε2(ξ,x)

. Denoting 〈Q(ξ)〉ξ =
∫
dξ NB(ξ)Q(ξ), where NB(ξ) is the band density of states

per spin, the chemical potential is fixed using n
2

=
∫∞
−∞ dx f(x)〈ρg(ξ, x)〉ξ.

The energy parameter ∆(~k, x) in Eq. (22) is a constant. We scale out a factor to define

∆o =
n2

4
∆(~k, x) = −n

2

4

CΦ

CΨ

. (25)

The physically observable electronic spectral function reads

ρG(ξ, x) =
Γ(x)

π

({
1− n

2

}
+
(
n2

4

){
ξ−x
∆0

})
+

Γ2(x) + ε2(ξ, x)
. (26)

Here the condition (f)+ ≡ max(0, f), is inserted in the ECFL factor to guarantee the

positivity of the spectral function for x � ξ[13]. We can determine ∆0 directly from the
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second level sum rule Eq. (16):

∆0 =

∫ ∞
−∞

dx f(x) 〈ρg(ξ, x){ξ − x}〉ξ. (27)

Thus 2/n×∆0 is the average inelasticity ||(ξ−x)|| of the FL Greens function over the entire

occupied band. It vanishes if ρg were a pure delta function, as in a Fermi gas, but is non zero

in a Fermi liquid. The linear energy term in Eq. (26) thus fundamentally arises to provide

the extra density to ρG, compensating the spectral depletion due to the first factor 1− n
2

(

originating in the non canonical nature of the projected electrons (I)).

In the numerical solution of the model, we can vary the shapes of the spectra from

sharp to broad by controlling the energy scale ∆0 via the parameters CΦ and ω0 in the FL

function σ(x). For illustration we neglect the distinction between the band energy and the

renormalized εk, choose a flat band density of states per spin ρ0(ε) = 1
2W

Θ(W 2 − ε2) hence

the band width is 2W . Choose CΦ = 1 W = 104K [14], this gives ∆0 ∼ 600K in the cases

studied. The spectral shapes from Eq. (26) have a characteristic left skew that is visible in

Fig. (1), and also in many experimental spectra in high Tc systems. The marginal Fermi

liquid hypothesis [15] assumes a linear correction to the spectral function, but is symmetric

about the Fermi energy, i.e. of the form |ξ − x| instead of the term in Eq. (26).

From Eq. (27) a fascinating duality emerges between the FL and the ECFL[16]. When

the FL is overall sharp such that ∆0 is small, the ECFL is significantly broadened. This

happens since in the ECFL factor in Eq. (26), the coefficient of ξ − x becomes large and

dominates the 1− n
2

contribution. The function ∆(k) in Eq. (22) could vanish at points in

k space in the full theory (without the assumption of k independence). At those points the

ECFL spectra would lose all coherence by this duality. A loss of coherence would inevitably

suggest a (false) pseudo gap, if our current viewpoint were unavailable. The linear term also

leads to a sloping term in the local density of states of the ECFL that the STM technique

would probe, although its magnitude and sign are less reliably computed- depending as they

do on the high energy scales W and ω0. In conclusion, we have presented essential ideas

underlying the theory of extremely correlated Fermi liquids. We have shown that an explicit

low order solution is very promising in the context of explaining the photoemission spectra

of the cuprate materials.

Detailed numerics and comparison with experiments are currently underway. This work

was supported by DOE under Grant No. FG02-06ER46319.
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FIG. 1: The density n = .85 and ω0 = 0.25. From left to right ρG(x) for energies (in units of W)
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spectral redistribution, the ECFL reaches linear T behaviour at a lower T than the FL.
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