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We introduce a method for solving the problem of an externally controlled electron spin in a
quantum dot interacting with host nuclei via the hyperfine interaction. Our method accounts
for generalized (non-unitary) evolution effected by external controls and the environment, such
as coherent lasers combined with spontaneous emission. As a concrete example, we develop the
microscopic theory of the dynamics of nuclear-induced frequency focusing as first measured in Science
317, 1896 (2007); we find that the nuclear relaxation rates are several orders of magnitude faster
than those quoted in that work.

The nuclear environment in III-V quantum dots has
been recognized in recent years as the main source
of decoherence for the electron spin and thus consti-
tutes an important hurdle for quantum technologies with
these systems. The microscopic dynamics of the closed
electron-nuclear spin system have been investigated in
important recent theoretical contributions [1, 2]. In these
works [1], controls have been represented as ideal, unitary
rotations of the electron spin, and the nuclear polariza-
tion along the external field is taken to be unaltered dur-
ing the electron evolution. This no longer is the case in
experiments involving controls that couple the system to
an additional bath, which can exchange polarization with
the system. Such experiments are relevant because inco-
herent interactions are needed to initialize and read out
the system. These experiments in quantum dots (QDs)
observed dynamic nuclear polarization and nuclear feed-
back effects [3–5]. While the details of the various ex-
periments differ, the main common feature is that an
external control interacts with the electron, and through
the hyperfine interaction the nuclear spins are also par-
tially polarized. The theories employed to describe such
experiments are usually in the form of rate equations
and some sort of Fermi golden rule, and typically invoke
phenomenological terms. Other theories [6] employed a
more microscopic approach, but without including, e.g.,
feedback and a complete treatment of control fields.

In this Letter, we develop a theory that addresses such
experiments involving non-unitary evolution of the elec-
tron while still treating the electron-nuclear interaction
microscopically. We make use of the operator sum repre-
sentation of quantum evolution and its simplified form in
the spin vector (SV) representation and develop a theory
that is perturbative with respect to the hyperfine cou-
pling. We develop both Markovian and non-Markovian
treatments, and by comparison of the two we establish
the validity regime of the Markovian approximation.

In order to illustrate the power of our approach, we
apply it to the experiment of Ref.[3], a proper micro-
scopic theory of which is lacking to date. This experi-
ment demonstrated nuclear-induced focusing of the elec-
tron precession rates in a QD ensemble through the feed-

back dynamics of the electron and nuclear spins. This
mechanism is largely driven by non-unitary evolution of
the electron spin, making it difficult to solve conven-
tional Master Equations to analyze the dynamics. In-
stead, a phenomenological treatment was introduced in
the Supporting Online Material of [3] and further devel-
oped in [5]. Our microscopic solution does not invoke
phenomenological quantities and provides a unified de-
scription of the experiments in [3, 5]. One of our striking
results is that the nuclear relaxation process is several
orders of magnitude faster than what is used in [3, 5].

The system we consider is a single electron trapped in
a QD and subject to an external in-plane static magnetic
field Bz, which splits the spin states along the z direction.
The electron interacts through the hyperfine contact in-
teraction with N nuclear spins in the QD (N ≈ 105).
There is also an external time dependent field acting on
the electron, as well as the photon bath that drives spon-
taneous emission (electron-hole recombination). The to-
tal Hamiltonian is H = H0 +Hhf +Hp +Hrad, where

H0 = ωeŜz + εT |T 〉〈T |+ ωn
∑

i
Îiz (1)

Hhf =
∑

i
AiŜz Î

i
z +

∑
i
Ai/2(Ŝ+Î

i
− + Ŝ−Î

i
+) (2)

Hp = Ω(t)|x̄〉〈T |+ h.c. (3)

Hrad =
∑

k
gk(|z〉〈T |+ |z̄〉〈T |)a†ke

iωkt + h.c. (4)

In Eqs. (1)-(4), Ŝj(Îj) is the electron (nuclear) spin op-

erator along the j axis, Ŝ± = Ŝx± iŜy, Ω(t) contains the
pulse information, |z〉(|z̄〉) is the spin up (down) state
along the B-field direction, |x̄〉 is the spin down state
along the optical axis x, |T 〉 is the excited trion state, g
is the coupling to the radiation bath, and a† is the bath
photon creation operator. In the hyperfine Hamiltonian
Hhf , the first term is referred to as the Overhauser term,
while the second is called the ‘flip-flop’ term.

The couplings Ω(t) arise from periodic, ultrafast laser
fields like those used in [3]. Since Ai/ωe � 1 for mod-
erate magnetic fields, we give a perturbative treatment
in this small parameter. We first focus on the zeroth
order solution (electron spin periodically driven without
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FIG. 1: Color online. Left: Experimental setup of [3, 5].
Right: Relevant QD states and polarization selection rules.

nuclear coupling). The primary effect of the pulses on
the electron spin dynamics is the creation or destruction
of spin polarization depending on the spin state. This
arises from the selection rules of the three-level system
in conjunction with the perpendicular external magnetic
field. For concreteness, we consider σ− pulses, in which
case only |x̄〉 is coupled to the light and excited by it to
the trion, see Fig. 1. Depending on the pulse parameters,
a certain population is moved to the trion. This popu-
lation subsequently decays back to the spin subspace via
spontaneous emission of a photon. Due to the B-field,
the population decays equally to the |x〉 and |x̄〉 states,
changing the electron spin polarization [7].

This physics describes non unitary evolution of the
electron spin due to the coupling of the system to the
photon bath. To describe this mathematically in the spin
subspace we need a generalization of the usual unitary
evolution operator to a set of so-called Kraus operators
{Ej} which transform the density matrix as

∑
j EjρE

†
j

[8]. These can be found by solving for the non-unitary
part of the evolution of an arbitrary initial system density
matrix and relating it to the final density matrix. Fol-
lowing this standard procedure [9] we find the following
Kraus operators in the |x〉, |x̄〉 basis

E1 =

[
1 0
0 q

]
, E2 =

[
0 k
0 0

]
, E3 =

[
0 0
0 k

]
, (5)

where q = qoe
iφ and k =

√
1−q2o

2 . The parameter q2o is

the probability to go from |x̄〉 to |x̄〉; it is related to the
pulse area and takes values from 0 to 1. The quantity
(1 − q2o) is related to the probability of population re-
maining in the trion state after the passage of the pulse,
and thus qo quantifies the deviation from unitary dynam-
ics in the qubit subspace (for unitary evolution qo = 1).
The parameter φ is the spin rotation angle caused by the
pulse and is a function of the detuning. We have there-
fore found 2-d matrices to describe the more complicated
dynamics of the pulse followed by spontaneous emission.

In between pulses the evolution is simply Larmor pre-

cession under Bz, given by U = e−iωeTRŜz , where TR
is the period of the pulse train. We are interested in

finding the steady state electron spin. For this, the SV
representation (Se,j = 2Tr(ρŜj)) is most convenient as
all the operations act on the left side of the SV. As a
result of the non-unitarity of the evolution, in addition
to the transformation of the SV a new contribution is
generated at each cycle:

Se(nTR) = S(n)
e = YeS

(n−1)
e +Ke, (6)

where we found that (Ye)ij = 2
∑
` Tr

[
ŜiE`UŜjU

†E†`

]
,

(Ke)j = 2
∑
` Tr

[
ŜjE`E

†
`

]
. In the limit n → ∞ the

steady state is S
(∞)
e = (1− Ye)−1Ke (explicit expression

is in [9]). We therefore see that a 3 × 3 matrix, Ye, and
a three-dimensional vector, Ke, are the quantities that
determine the dynamics of the electron spin. Because its
structure is convenient we use the equivalent and more
compact 4× 4 matrix that contains all the information:

Ye =


1 0 0 0

Ke,x Ye,xx Ye,xy Ye,xz
Ke,y Ye,yx Ye,yy Ye,yz
Ke,z Ye,zx Ye,zy Ye,zz

 . (7)

In this 4-d representation, the steady-state SV S(∞)
e =

(1, S
(∞)
e,x , S

(∞)
e,y , S

(∞)
e,z ) is the eigenvector of 1 − Ye with

eigenvalue 0. This more compact representation will
prove very useful when we introduce the nuclear spin.

Having solved the zeroth order problem, we proceed
to the inclusion of the hyperfine interaction. For simplic-
ity we assume that the nuclear spin has I = 1/2. The
nuclear spins affect each other through their interactions
with the electron. When A

√
N/ωe � 1, where A is a

typical value of Ai, flip-flops occur slowly so that multi-
nuclear effects such as dark state saturation [6] are neg-
ligible, and the primary effect of the nuclear spins on the
electron is a shift of the precession frequency through the
Overhauser term (Overhauser shift). Therefore, we con-
sider first a single nuclear spin interacting with the elec-
tron and incorporate multinuclear effects by shifting the
electron Zeeman frequency by an amount proportional to
the net nuclear polarization [3, 5].

For a single nuclear spin interacting with the electron
spin via the hyperfine Hamiltonian we use a SV represen-
tation, which in this case is 15-d. For the type of control
used in Ref. [3, 5], there are no nuclear effects during
the ultrashort (i.e., broadband) pulses, which do not dis-
tinguish between the electron spin eigenstates along the
field Bz. Therefore, the Kraus operators are simply ten-
sor products between the Ej ’s of Eq. (5) and the identity.
Following the same prescription as for the single spin, we
define a 16-d SV Si = 4Tr (ρGi) , where ρ is the 4 × 4
density matrix of the two spins and the generators Gi are
tensor products of spin operators (including the identity)
G4k+` = Ŝk ⊗ Î`, where k, ` run from 0 to 3. With our
conventions, S0 = 1. The 16-d analogue of Ye is given by
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Yij = 4
∑
` Tr

[
GiE`Ue,nGjU

†
e,nE

†
`

]
. In general S is not

simply a tensor product of the two individual SVs, but
contains quantum correlations (entanglement).

The pulses are expected to ‘interrupt’ the electron-
nuclear evolution only for qo � 1, while entanglement
will build up when qo ∼ 1. Therefore a Markovian ap-
proximation should be sufficient for short pulse train pe-
riods and pulses of strength qo ∼ 0 (as in [3, 5]) .

Markovian approximation–To find an effective relax-
ation rate for the nuclear spin, we use the equation
S(t + TR) = YS(t) for the 16-d case. In the Markovian
approximation, we only keep the separable (tensor prod-

uct) part of S, i.e., S = S(∞)
e ⊗ Sn, where we have used

that the timescales of evolution for the electron and the
nuclei are quite different [10], so that we can assume that
the electron steady state is reached quickly compared to
the nuclear dynamics [3, 5, 11, 12]. The equation for
the 4-d nuclear SV is then Sn(t+ TR) = YnSn(t), where
Yn explicitly contains electron SV components. Since
the nuclear evolution is much slower than the pulse rep-
etition rate, we can coarse grain this equation, and ob-
tain a differential equation for the nuclear SV, d

dtSn =
1
TR

(Yn − 1)Sn, which gives Sn(t) = e(Yn−1)t/TRSn(0).
For small flip-flop coupling (but keeping the Overhauser
term to all orders), we find the two smallest eigenvalues
of 1− Yn to be λ1 = 0 and

λ2 =
A2

ω2
e

1 + S2
e,z + (S2

e − 1) cos(ATR

2 )

1 + S2
e,z + (S2

e,z − 1) cos(ATR

2 )
sin2 ωeTR

2
, (8)

where Se is the length of the electron steady state SV, and
for brevity we have suppressed the superscript ∞ [13].
The zero eigenvalue corresponds to the nuclear steady-
state SV, which to leading order in the flip-flop term is

S(∞)
n = (1, 0, 0, S

(∞)
n,z ) where

S(∞)
n,z =

2Se,z[sin
2
(
ATR

4

)
+ S2

e cos2
(
ATR

4

)
]

1 + S2
e,z + (S2

e − 1) cos(ATR

2 )
. (9)

The nonzero eigenvalue λ2 gives the nuclear relaxation
rate γn = λ2/TR. The single nucleus spin flip rates,
which are generally different in the presence of nonzero

polarization [5], are w1
± = γn(1 ± S

(∞)
n,z )/2, where w1

+

(w1
−) is the rate to flip from down (up) to up (down). Fig.

2 shows that our rates are orders of magnitude larger than
those of [3, 5]. The heuristic expressions only took into
account that the relaxation rates should vanish when TR
is a multiple of the electron spin precession period as well
as the overall scale factor A2/ω2

e . The first of these fea-
tures arises because an electron spin synchronized with
the pulses is unaffected by them so that no nuclear re-
laxation takes place. The scale factor is fixed by noting
that energy conservation leads to a suppression of hyper-
fine flip-flops when ωe � ωn; only virtual flip-flops are
allowed and since these must come in pairs, their effect
is second-order in A/ωe.
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FIG. 2: Color online. Plot of the log of the nuclear relaxation
rates multiplied by TR from our current theory (upper set of
curves) with our Markovian approximation (solid) and exact
numerical (dashed) as function of qo. The lower curves are
based on Refs. [3, 5] and are several orders of magnitude less.
Pulse parameters are φ = π/2, TR = 3900.3/ωe, A/ωe = 10−5.

Our theory reveals an additional dependence of the re-
laxation rate γn on the orientation of the electron spin
that was overlooked by [3, 5]. When the electron SV is
transverse to the B-field (Se,z ≈ 0 and Se � 0), flip-flops
are not suppressed by energy conservation and angular
momentum is freely transferred from the electron to the
nuclei, leading to a strong enhancement of γn. This is
also clear from Eq. (8) where the denominator is close
to zero when Se,z ≈ 0 while the numerator remains fi-
nite due to Se � 0. These conditions are realized in the
regime most relevant for the experiments in Refs. [3, 5]
where qo � 1, that is, when the pulses drive most of the
population out of the qubit subspace, re-orienting the
electron spin along the optical (x) axis. Note that the
enhancement of γn depends crucially on the openness
of the system since the photon bath acts as an angu-
lar momentum reservoir. Our predicted timescale can be
checked experimentally by measuring in a single QD the
frequency of the pump-probe signal at various timescales.
By systematically varying the B-field and pulse parame-
ters the relaxation rates could be mapped out as a func-
tion of the parameters.

The probability distribution for the net multinuclear
polarization m/2 is obtained from a kinetic equation for
m, which is the difference in the number of spins pointing
up and down:

dP (m)

dt
= −

∑
±

[
w±(m)

N ∓m
2

]
P (m) (10)

+
∑
±
P (m± 2)w∓(m± 2)

[
N ±m

2
+ 1

]
,

where w±(m) are the rates in the presence of nuclear
polarization m/2. These are found by implementing the
Overhauser shift, w±(m) = w1

±(ωe+mA), where we have
assumed equal couplings for all nuclear spins [14]. Ex-
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FIG. 3: Color online. The nuclear polarization probability
distribution with N = 5000 nuclei and pulse parameters φ =
π/4, qo = 0.2, A/ωe = 10−5 and for (a) TR = 797.9/ωe and
(b) TR = 800.3/ωe, from our Markovian theory (blue/solid
line), the theory from Ref.[3] (red/dotted) and the one from
Ref.[5](green/dashed).
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FIG. 4: Color online. Nuclear steady state SV z com-
ponent as function of qo for Markovian approximation
Eq. (9) (red/dotted), analytical non-Markovian, Eq. (11)
(green/solid) and exact numerical (black/dashed) for φ =
π/2, TR = 3900.3/ωe, A/ωe = 10−5. Inset shows Sn,x, Sn,y.

amples of the resulting distribution are shown in Fig. 3
for typical values of the parameters. In general, large
TR results in more peaks in P (m) and thus gives rise
to a greater degree of nuclear state “narrowing” (T ∗2 is
enhanced). Furthermore, the sharpest peaks occur at
values of m such that (ωe + mA)TR is an odd integer
multiple of π, and the locations of these peaks can be
controlled by adjusting ωeTR. A systematic exploration
of the parameter space can help tailor the nuclear state.

Beyond the Markovian approximation–Our analysis
above provides analytic expressions for the nuclear dy-
namics in the Markovian approximation, an approach
valid for qo � 1 (see Fig. 2). Our formalism how-
ever is not inherently Markovian, and we now present
an analytical non-Markovian expression for the nuclear
steady state. We return to the 16-d matrix Y and per-
form a perturbative expansion in the coupling which is a
controlled approximation in the hyperfine coupling. The
steady state nuclear SV turns out to be

S(∞)
n = c(1 + q2o − 2qo cosφ, (1− q2o) tan(ωeTR/2),

qoωeTR sinφ), (11)

where c is in [15]. Nonzero x, y components arise from
expanding the Overhauser interaction in addition to the
flip-flop in deriving Eqn. (11). Fig. 4 shows that the
dynamics become less Markovian as the pulses become
more unitary (qo → 1).

In conclusion, we have developed a formalism for an-
alyzing experiments with generalized, non-unitary con-
trols on the electron spin confined in a QD and coupled
to the host nuclei. By applying it to the experiments of
[3, 5] we have found that the nuclear relaxation is or-
ders of magnitude faster than previously thought. Our
method is in general non-Markovian and is applicable to
controls other than ultrafast lasers by appropriate choice
of the Kraus operators. It can have wide application to
other systems, such as gated QDs and NV centers in dia-
mond [16]. An interesting application of the theory would
be to use it for the design of the final nuclear state.
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