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We show that the chiral-symmetry-broken phase of massless QED in the presence of a magnetic
field exhibits strong paraelectricity. A large anisotropic electric susceptibility develops in the in-
frared region, where most of the fermions are confined to their lowest Landau level, and dynamical
mass and anomalous magnetic moment are generated via the magnetic catalysis mechanism. The
nonperturbative nature of this effect is reflected in the dependence of the electric susceptibility on
the fine-structure constant. The strong paraelectricity is linked to the electric dipole moments of
the particle/anti-particle pairs that form the chiral condensate. The significant electric susceptibil-
ity can be used as a probe to detect the realization of the magnetic catalysis of chiral symmetry
breaking in physical systems.
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Effects of strong magnetic fields in QED have been an
active research area for many years [1]. At present, such
studies have been reactivated by the observation of very
strong fields, in the range of 1012−1016 G, in the surface
of stellar compact objects. Also, by both theoretical and
experimental indications that the colliding heavy ions at
RHIC and other collaborations can generate very strong
magnetic fields, estimated to be of order eH ∼ 2m2

π(∼
1018G) for the top collision,

√
sNN 200 GeV, in non-

central Au-Au impacts at RHIC, or even larger, eH ∼
15m2

π(∼ 1019G), at future LHC experiments [2].

On the other hand, the study of theories of mass-
less relativistic fermions has recently gained new interest
in the context of quasiplanar systems, such as pyrolitic
graphites (HOPG) [3, 4] and graphene [5], because their
low-energy excitation quasiparticle spectrum have a lin-
ear dispersion. The dynamics of those charge carriers
is described by a ”relativistic” quantum field theory of
massless fermions in 2+1 dimensions [3, 6].

Massless QED in the presence of a magnetic field ex-
hibits a peculiar phenomenology. Due to the Landau
quantization of the fermion’s transverse momentum in a
magnetic field, the dynamics of the lowest Landau level
(LLL) particles is 1+1-dimensional. This dimensional re-
duction favors the formation of a chiral condensate, even
at the weakest coupling, because there is no energy gap
between the infrared fermions in the LLL and the an-
tiparticles in the Dirac sea. This phenomenon is known
as the magnetic catalysis of chiral symmetry breaking
(MCχSB). The MCχSB modifies the vacuum properties
and induces dynamical parameters that depend on the
applied field. This effect has been actively investigated
for the last two decades [7]-[10]. In the original studies of
the MCχSB [7]-[9], the catalyzed chiral condensate was
assumed to give rise only to a dynamical fermion mass.
Recently, however, it has become clear [10] that besides
the dynamically generated mass, the MCχSB inevitably
produces also a dynamical anomalous magnetic moment
(AMM), because this second parameter does not break
any symmetry that has not already been broken by the
chiral condensate and the magnetic field. The dynam-

ical AMM leads, in turn, to a non-perturbative Lande
g-factor and Bohr magneton proportional to the inverse
of the dynamical mass. The induction of the AMM leads
to a non-perturbative Zeeman effect [10].
An important aspect of the MCχSB is its universal

character. It will occur in any relativistic theory of inter-
active massless fermions in a magnetic field. The MCχSB
has been proposed as the mechanism explaining various
effects in quasiplanar condensed matter systems [11].
A drawback of the MCχSB phenomenon is that the

dynamical parameters (mass and AMM) are extremely
small even at relatively high fields. Aside from the fact
that it may be experimentally challenging measuring the
magnetically catalyzed parameters, there may be cases
where other competing mechanisms are proposed to ex-
plain a given magnetic field effect. Consequently, it
would be nice to have an independent way to experi-
mentally distinguish the MCχSB from other possibilities.
One of the main purposes of this letter is to argue that by
using a weak electric field as a probe, one could obtain, by
measuring the induced electric polarization, compelling
evidence in favor or against the existence of MCχSB.
The electric polarization is found as minus the deriva-

tive of the electromagnetic free energy with respect to
the applied electric field. For a weak electric field E, the
free-energy density can be expanded in powers of E as

Φ = Φ0 − ηE − χE2 + ... (1)

In a magnetized medium, the coefficients Φ0, η, χ, etc.,
may in principle depend on the magnetic field. The sus-
ceptibility coefficient η is different from zero for ferro-
electric materials [12]. In magnetized QED it is zero, be-
cause the second term in the r.h.s. of (1) violates parity,
a symmetry that is not broken neither in massive QED
nor in the chirally broken phase of massless QED. The
coefficient χ characterizes the lowest order of the system
dielectric response. It accounts for the electric polariza-
tion P = χE induced by the applied electric field. This
term does not break any additional symmetry in (1).
The electric susceptibility χ in massive QED at strong

magnetic field can be obtained from the one-loop photon
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polarization operator in an external field configuration
defined by the gauge Aµ = (−Ex3, 0,−Hx1, 0), which
implies the existence of uniform parallel magnetic and
electric fields in the x3-direction. Since the electric field
is only playing the role of a probe, while we are looking for
a strong magnetic field effect, we take the approximation,
|eE| < m2 < |eH |, where m is the electron mass. Hence,
in the calculation of the photon polarization operator the
fermion Green’s functions depend only on the magnetic
field, while the effect of the weak electric field can be
neglected. Thus, the general covariant structure of the
polarization operator under such conditions is [13]

Πµν(q) =
3∑

a=1

κa
b
(a)
µ b

(a)
ν

(b(a))2
, (2)

where b
(a)
µ are the orthogonal vectors, transverse to qµ,

b(1)µ = −q2F̂µν F̂νρqρ + q2⊥qµ,

b(2)µ =
1

2
εµνρλF̂νρqλ, b(3)µ = F̂µνqν , (3)

with F̂µν = Fµν/H denoting the normalized electromag-
netic strength tensor. In (2), κa are scalar coefficients
depending on the magnetic field. At strong magnetic
field, where the electrons will all lie in the LLL, only the
coefficient κ2 is different from zero. Thus, from (2) and
(3) we see that only the longitudinal components of Πµν ,
which in turn depend only on the longitudinal momenta,
contribute in the strong field limit. In the static limit,
q0 = 0, and at small spatial momenta (for a constant and
uniform electric field, the contribution to the free energy
of powers of momentum higher than quadratic is zero,
so we do not need to consider them), the polarization-
operator coefficient κ2 behaves as [13]-[14]

κ2(q0 = 0, |−→q | → 0) ≃ −α|eH |
3πm2

q23 (4)

In this limit, the only component different from zero is
Π00 = κ2. Its contribution to the electromagnetic free-
energy density is given by

Φ− Φ0 ∼ 1

V

∫
A0(x3)Π00(x3 − x′

3)A0(x
′
3)dx3dx

′
3 =

= −χQEDE2, (5)

with χQED = α|eH |/3πm2, and V the system volume.
Clearly, high field values |eH | > m2 ∼ 1013 G are re-
quired for the electric susceptibility (χQED) to be sig-
nificant. Therefore, this polarization effect can only be
relevant for the astrophysics of compact stars and for
heavy ion collisions, where such large field strengths can
exist. It is worthy noticing, on the other hand, that the
result (4) is not valid for m = 0. One can check that if
the electron mass is taken to zero and the calculations are
repeated in the strong-field limit, the electric susceptibil-
ity becomes zero. In this case, we know that the situa-
tion cannot be changed by any higher order perturbative

contribution, since the chiral symmetry of the massless
theory is protected against perturbative corrections. Chi-
ral symmetry, however, can be broken non-perturbatively
via MCχSB.
Our goal now is to find the electric susceptibility in

the chirally broken phase of massless QED in the pres-
ence of uniform electric and magnetic fields along the
x3-direction. As already discussed, along with the in-
duced dynamical mass, the chiral condensate necessar-
ily produces a dynamical AMM [10]. Here again, we
are looking for a strong magnetic field effect and treat
the electric field as a weak probe. Hence, we assume
|eE| < (E0)2 < |eH |, with E0 the dynamical LLL rest
energy. Accordingly, we neglect E in the fermion propa-
gator. The one-loop photon polarization operator is

Πµν(x, y) = −4πiαTr [γµG(x, y)γνG(y, x)] (6)

where the electron full propagator is given by

G(x, x′) =
∑∫ d4p

(2π)4
Ep(x)Π(l)G̃

l(p)Ep(x
′), (7)

with
∑∫ d4p

(2π)4 ≡ ∑l

∫
dp0dp1dp2

(2π)4 , Π(l) = ∆(+) + I(1 − δ0l)

[9], and l = 0, 1, 2, ... the LL numbers. We assume
sgn(eB) = +. In (7) we used the Ep Ritus’ transforma-
tion Ep(x) =

∑
σ=±1 Epσ(x)∆(σ) (originally developed

for fermions in [15] and later extended to vector fields in

[16]), where ∆(σ) = I+iσγ1γ2

2 , σ = ±1, are the spin

projectors, and Epσ(x) = Nne
i(p0x

0+p2x
2+p3x

3)Dn(ρ),
with Dn(ρ) denoting the parabolic cylinder functions

with argument ρ =
√
2|eH |(x1 − p2/eH), normalization

factor Nn = (4πeH)1/4/
√
n!, and positive integer index

n = n(l, σ) ≡ l + σ+1
2 . Eq. (7) can be used to obtain

the fermion propagator in momentum space as a function
of the dynamical mass M (l) and the magnetic energy T l

associated to the AMM of each LL [10],

Gl(p, p′) = (2π)4δ̂(4)(p− p′)Π(l)G̃l(p), (8)

with

G̃l(p) =
∑

σ,σ=±1

N l(σT, σV||)− iV l
⊥(Λ

+
⊥ − Λ−

⊥)

Dl(σσT )
∆(σ)Λσ

||,

(9)

and

Λσ
|| =

1

2

(
1 + σ

6p||
|p|||

)
, Λσ

⊥ =
1

2

(
1 + iσγ2

)
,

N l(σT, σV||) = σT l −M l − σV l
||,

Dl(σσT ) = (M l)2 − (V l
|| − σσT l)2 + (V l

⊥)
2,

V l
|| = (1− Z l

||)|p|||, V l
⊥ = (1− Z l

⊥)|p⊥| (10)

Here, p‖ = (p0, 0, 0, p3) and p⊥ = (p1, p2, 0, 0) denote the
longitudinal and transverse momenta, respectively, while
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Z l
|| and Z l

⊥ are the wave-function renormalization coef-

ficients. Taking into account that the MCχSB is an in-
frared phenomenon where the magnetic field becomes the
leading parameter, we have that the main contribution
to the polarization operator comes from the low energy
region where only fermions in the LLL contribute. Thus,
transforming (6) to momentum space and keeping the
leading contribution l = 0, we obtain

Π||
µν(q) = −2iα|eH |e−

q2⊥
2|eH|

∫
d2p

(2π)2

× Tr
[
γ||
µ∆(+)G̃0(p)γ||

ν∆(+)G̃0(p− q)
]
, (11)

with

G̃0(p) =
∆(+)Λ+

‖

|p||| − (M0 + T 0)
−

∆(+)Λ−
‖

|p|||+ (M0 + T 0)

+
∆(−)Λ+

‖

|p||| − (M0 − T 0)
−

∆(−)Λ−
‖

|p|||+ (M0 − T 0)
(12)

Note that only the longitudinal components of Πµν sur-
vive in (11). Integrating in momenta, using Feynman
parametrization, and dimensional regularization yields

Π‖
µν(q) = κ2

b
(2)
µ b

(2)
ν

(b(2))2
, (13)

where

κ2 ≡ −2α|eH |
π

e−
q2⊥

2|eH|

×


1 + 2E02

q||

√
q2|| − 4E02

ln




√
q2|| − 4E02 + q||

√
q2|| − 4E02 − q||




 , (14)

with E0 = M0 + T 0, the LLL rest energy. Notice that
the polarization operator (13) is transverse, qµΠµν =
Πµνq

ν = 0, ensuring the gauge invariance of the LLL
approximation. In the static limit, q0 = 0, and infrared
region |−→q | → 0, the coefficient κ2 behaves as

κ2(q0 = 0, q3 → 0) ≃ −α|eH |
3π(E0)2

q23 (15)

This result indicates that the inclusion of the AMM term
does not contribute to produce Debye screening in the in-
frared region. That is, at distances r > 1/E0, a charge
within this medium interacts through a normal Coulomb
potential. Comparing (15) with (4) we see that the in-
duced rest energy E0 plays the same role in the broken
phase of massless QED as the electron mass in massive
QED. The difference is, however, that E0 is not a fixed
parameter, but it has to be found as the solution of the
Schwinger-Dyson equation for the electron self-energy.
To find E0 we follow the results of Ref. [10], where

E0 was found as the solution of the SD equation for the
electron self energy in the ladder approximation

Σ(x, x′) = ie2γµG(x, x′)γνDµν(x− x′), (16)

where Σ(x, x′) is the fermion self-energy operator,
Dµν(x − x′) is the bare photon propagator in the Feyn-
man’s gauge [8], and G(x, x′) is the full fermion propa-
gator (7). In the LLL, the SD equation reduces to [10]

1 = e2(4eH)

∫
d4q̂

(2π)4
e−q̂2⊥

q̂2
1

(E0)2 + q2‖
(17)

where we introduced the normalized-momentum notation
q̂2 = q2/2|eH |. The solution of (17) is given by

E0 ≃
√
2|eH | exp−

√
π

α
(18)

The electric susceptibility can be found now similarly
to the QED case done previously. From (13)-(15) and
(18) we have that the medium behaves as a linear, ho-
mogeneous, and anisotropic dielectric, with electric sus-
ceptibility in the x3-direction

χMCχSB =
α|eH |
3π(E0)2

=
α

6π
exp

√
4π

α
(19)

Eq.(19) shows that the susceptibility depends non-
perturbatively on the fine-structure constant and its
value is independent of the applied magnetic field. No-
tice the marked difference with the QCD situation at
strong magnetic field (|eH | ≫ ΛQCD), since in QCD the
MCχSB leads to a chromo-susceptibility that remains
a function of the magnetic field through the running of
the strong coupling αs [17]. The colossal susceptibility
(19) characterizes the electric response of the system to
an electric field parallel to the magnetic one. At zero
temperature, no critical magnetic field strength is re-
quired to catalyze the chiral symmetry breaking. On
the other hand, even though the magnitude of the elec-
tric polarization does not depend on the magnetic field,
for a fixed weak electric field, it must satisfies the con-

dition P < α|H|
3π2 . That is, increasing H increases E0,

and a larger electric field probe, constrained by the con-
dition |eE| < (E0)2 < |eH |, is allowed. We should un-
derline that from a physical point of view, it is natural
to expect a large anisotropic electric susceptibility in the
phenomenon of MCχSB in QED, as the ground state of
the system is characterized by pairs forming tiny elec-
tric dipoles that can be polarized by the external electric
field. The role of the magnetic field here is to induce
the pairs, while the role of the electric field is to polarize
them.
The dramatic increase of the electric susceptibility pro-

duced by the magnetically catalyzed chiral pairs can be
the best candidate to probe whether the MCχSB mech-
anism is taking place or not. In a system of massless
fermions in a magnetic field, if the system exhibits a siz-
able electric polarization under the application of a weak
electric field probe along the direction of the magnetic
field, it will be a plausible evidence of the MCχSB phe-
nomenon.
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An important implication of this result is that the
chirally broken phase exhibits strong paraelectricity, a
property found in certain condensed matter systems like
quantum paraelectric (QP) materials [18] and transition-
metal-oxides (TMO) [19]. In those materials, unaligned
electric dipoles are aligned in an external electric field,
producing a high electric susceptibility, often exceeding
104. In QP materials the large electric susceptibility is
temperature-independent below certain critical temper-
ature, a property attributed to a quantum phase transi-
tion [18]. An interesting question to explore in the future
is whether the strong susceptibility found here within
a (3+1)-dimensional theory is also present in quasipla-
nar condensed matter systems as bilayer graphene. It is
known, that the band structure of bilayer graphene can
be controlled by an applied electric field perpendicular to
the layers’ plane. The electric field creates an electronic

gap between the valence and conduction bands with en-
ergy values that varies from zero to mid-infrared [20],
depending on the field strength. Under a very weak elec-
tric field the gap is practically zero and the spectrum is
Dirac-like. Even though this is a very peculiar 3+1-D
system, only formed by two layers, one could attempt
to model it with a 3+1-D theory of interactive massless
fermions. Due to the universality of the MCχSB, we ex-
pect that the application of a strong magnetic field par-
allel to the weak electric one will trigger the generation
of a dynamical energy gap. Under these conditions, one
would expect that detecting a very large electric suscep-
tibility in the direction of the applied fields would signal
the realization of the MCχSB mechanism.
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