aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Entropy of Isolated Quantum Systems after a Quench
Lea F. Santos, Anatoli Polkovnikov, and Marcos Rigol

Phys. Rev. Lett. 107, 040601 — Published 18 July 2011
DOI: 10.1103/PhysRevLett.107.040601


http://dx.doi.org/10.1103/PhysRevLett.107.040601

Entropy of isolated quantum systems after a quench

Lea F. Santo$,Anatoli Polkovnikov? and Marcos Rigét*

!Department of Physics, Yeshiva University, New York, NY 10016, USA
2Departrnent of Physics, Boston University, Boston, MA 02215, USA
3Department of Physics, Georgetown University, Washington, DC 20057, USA
“Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

A diagonal entropy, which depends only on the diagonal etgésnef the system’s density matrix in the
energy representation, has been recently introduced asdper definition of thermodynamic entropy in out-of-
equilibrium quantum systems. We study this quantity afteingeraction quench in lattice hard-core bosons and
spinless fermions, and after a local chemical potentiahghen a system of hard-core bosons in a superlattice
potential. The former systems have a chaotic regime, winereliagonal entropy becomes equivalent to the
equilibrium microcanonical entropy, coinciding with theset of thermalization. The latter system is integrable.
We show that its diagonal entropy is additive and close, bttegual, to the entropy of a generalized Gibbs
ensemble (GGE) that accounts for the conserved quantitiegegrability. The difference between the two
entropies may be attributed to additional correlations@néin the system and not captured by the GGE.

PACS numbers: 05.70.Ln, 05.30.-d, 05.45.Mt, 02.30.1k

The notion of entropy was first used by Clausius in the mid-the energy distribution is not sparse, assumptions thadare
XIX century and was soon put in the context of statistical me-pected to hold in nonintegrable systems. For integrable sys
chanics by Boltzmann and Gibbs. Generalized to quantuntems, the existence of a complete set of nontrivial conserve
mechanics by von Neumann in the 30’s and incorporated byguantities [5] invalidates, in general, those assumptiand
probability theory by Shannon in the 40’s, entropy has maniprecludes those systems from reaching thermal equilibrium
fested itself in different forms along the years. Despitedir  However, it has been shown that few-body observables after
versity, the consensus is that any physical definition afognyt ~ equilibration can still be described by a Generalized GHibs
must conform with the postulates of thermodynamics [1, 2]. semble (GGE) [6]. The GGE is a grand-canonical statistical

An appropriate definition of entropy, suitable also for iso- ensemble subjected to the constraints imposed by the indepe
lated quantum systems out of equilibrium, is fundamental fo dent integrals of motion (see also Refs. [7]).

advances in non-equilibrium statistical mechanics andafor Here, we study the d-entropy in isolated quantum systems
better understanding of recent experiments with quaatisd  after a quench in both integrable and nonintegrable regimes
quantum many-body systems, such as those realized with Wye consider two kinds of quenches in one-dimension (1D): an
tracold atoms [3]. Von Neumann's entropy, definedas=  interaction quench for hard-core bosons (HCBs) and spinles
—Tr(plnp), wherep is the many-body density matrix (the fermions, which have a nonintegrable (chaotic) regime [8],
Bo_Itzmann cqnstant here and throughout this paper is set t9nd a local chemical potential quench for HCBs (or spin-
unity), complies with the laws of thermodynamics when de-jess fermions) with a superlattice potential, which are-int
scribing isolated quantum systems in equilibrium and quangraple [6]. In the first case, as the system transitions to
tum systems interacting with an environment, but it becomeghaos we show that the distribution function of energy be-
problematic when dealing with closed systems out of equilib comes Gaussian-like and the d-entropy approaches the ther-
rium. Since in an isolated systefy is conserved for any  modynamic entropy. This indicates that thermodynamically
process, this entropy is not consistent with the second faw e system becomes indistinguishable from a thermal dtate.
thermodynamics. This motivated the recent introduction ofe second casé,; is shown to be additive and its value to be

the diagonal (d-)entropy [4], which is given by closest to the value of the entropy of a generalized ensemble
Sy = — Z prn I0(pn),s (1) The d|fferenc_es between_the two entropies scallellmealﬂy wi
- the system size suggesting that there are additional eerrel

tions between degrees of freedom not captured by the gener-

wherep,,, are the diagonal elements of the density matrix IN_ized ensemble 9.

the instantaneous energy basis. In equilibrifi;mcoincides _ _ _ o

with the von Neumann’s entropy. In additiofl, was argued Quench and entropies. We consider a particular initial

to satisfy the required properties of a thermodynamic gytro state|¢in) which is an eigenstate of a certain initial Hamil-

itincreases when a system in equilibrium is taken out of equitonian. At timer = 0, the Hamiltonian is instantaneously

librium, it is conserved for adiabatic processes, it is ugly ~ changed (quenched) to a new one with eigenstaites and

related to the energy distribution (and as such satisfieithe ~ €igenvaluesz,,. The initial state then evolves a8(7)) =

damental thermodynamic relation), and it is additive. 32, Coe FnT1W,,), whereC,, = (W,|¢ini) and|C,[* cor-
More specifically, it was indicated in Ref. [4] that the d- 'espond to the diagonal elements,,, of the density matrix,

entropy should be equivalent to the equilibrium microcanon p(1) = (7)) (e(T)].

cal entropy when the energy fluctuations are subextensive an For a generic system with a nondegenerate and incommen-



2

surate spectrum, the expectation value of a generic few-bodn|[(1 — <¢ini|fm|¢ini))/<winiIfm|¢ini>]- Since the GGE is a

observable) was shown to relax to the infinite time average grand-canonical ensemble, which can suffer from largesfinit

(O(t)) = > punOnn, Which depends only on the diagonal size effects for small systems, in addition to _the entro_pjnin

elementsy,., andO,.,, = <‘1/n|(>|‘1/n> [10, 11]. Thus, the d- QGE,SGGE, we also compute the eptropy |[1 its canonical ver-

entropy (1) is the entropy of the diagonal ensemble as defined{®" ((_BCE) as the tracBsce = Tr[pGGE_ln(pGGE)]CE‘“ where

by the initial state in the energy representation. Formadly only e|genstat§s of the Hamiltonian with the same number of

the present case of a sudden quenhis equivalent to the Particles contribute to the trace. o _ _

von Neumann'’s entropy of the time averaged density matrix. Chaotic systems. We consider periodic 1D chains with
The d-entropy resembles the Shannon (information) enf€arest-neighbor (NN) and next-nearest-neighbor (NNN)

tropy, but with no arbitrariness in the basis [12]. The diffe NOPPINg and interaction, with the following Hamiltonian

ence betweery,; and thermodynamic entropies can serve to L

measure additional information contained in the diagoadlp Hp = Z [—t (13;5]-+1 + H.c.) —t (l};l;jﬁ + H.c.) + (4)

of the density matrix and not in the equilibrium ensemble. j=1
One may also write the d-entropy as the difference of a 1 o 1 1 n 1

smoothS, and a fluctuating; partSy = Ss + Sy [4], where 14 (”g‘ - 5) (anrl - 5) +V (”g‘ - 5) (”j+2 - 5)}

Ss = Z Pnn In[N(E,)E], (2)  for hard-core bosons and similarly for spinless fermionis{w

b — f:, b — fI andat — @f), where standard nota-
n 'J Jr Yy ! J ! . .
Sp=— me 1 [ppnn(En)E]. 3) tion has been used [8]. We taketo pe the Igttlce size and
~ N = L/3 to be the number of particles. Since the system
_ ) is translational invariant, each sector with particles is fur-

Heren(E,) is the den3|2ty_ of states at energy,: 77(E2) = ther decomposed into independent blocks each one assbciate
>, 0(E — En) and 0E* is the energy variancedE® = jth a total momentunk. Moreover, in the particular case of

22 Prn(E—Eini)?, WhereEiy; = (vini | H [¢ini) is the expec- 1 — ¢ parity is also conserved. We use full exact diagonaliza-
tation value of the quenched Hamiltonian with respect to thejgn, to compute all eigenstates of Hamiltonian (4). Theee ar
initial state. In the continuum limitS; = [ dEW(E)Su(E)  no random elements in this or in the following Hamiltonian
and Sy = [dEW(E)In[W(E)SE], where W(E) = jnvestigated, so no averages are taken in this paper.

> Prnd(E — E,) is the energy distribution [15]. 18}, the The initial states considered are eigenstates of Eq. (4) wit
microcanonical entropyy,, (E) = In[n(E)JE], is the l0g-  parametersii, Vi, ¢/, V'’ belonging to the: = 0 subspace.
arithm of the total number of accessible states in the ranggne final Hamiltonian (after the quench) has=s V = 1

of energy[E — 0E/2,E + 0E/2]. If the system is large and the same initial values f = V’. The initial states
and finite-size effects become negligible, then up to nonexyre selected such that their energis in the final quenched
tensive correctionsy,, becomes equal to the canonical en- Hamiltonian are the closest t6 at a chosen effective tem-

tropy, Se = — 3, [Z7 e /T in(Z7 e F/T)], whereT  peratureT’, computed as? = Z~'S E,e~P/T. When
is the temperature related to the energy of the system and _ 7 — ( the system is integrable, while the addition of
Z =3, ¢ /s the partition function (see Ref. [17]).  NNN terms eventually induces the onset of chaos [8].

WhenW (E) is narrow, so thaf E is subextensive§ be- The use of full exact diagonalization for the models above

comes equivalent to the equilibrium microcanonical entrop |imits the system sizes that can be studied to a maximum of 8
Moreover, if in additionWV'(E) is a smooth function of en- particles in 24 lattice sites and therefore prevents pregal
ergy, a Gaussian in particular, théf is also subextensive. jng studies of the entropies with increasing system sizés Th
These features are expected to be generic for the noniblegra i |eft to the integrable quenches where larger latticesbean
(chaotic) regime, where the eigenstates (away from thesedg@xplored. Here we compar;, S, S, Sm, and$, for the

of the spectrum of systems with few-body interactions) be+pg largest system sizes available and for various Hanidton
come pseudo-random vectors [8, 18]. parameters as one departs from the integrable point.

In the integrable limit, on the other hand, a nontrivial com- The main panels in Fig. 1 depi&, and S, for systems
plete set of conserved quantities reduce the number of eigefith 7, = 24 at different effective temperatures #sV” in-
states of the Hamiltonian that have a nonzero overlap wéth thcreases and the system departs from the integrable point. An
initial state [11, 19], sq,, becomes sparse arff} exten-  agreement betwee$); and.S, can be seen as one approaches
sive. In this case, both ternfs andS; are expected to con-  the chaotic limit, improving with temperature and systenesi
tribute to the d-entropy. It then becomes appropriate to-Com[ct insets in Fig. 1(a) and 1(c)]. (By comparing the left and
paresS; with the entropy of the GGE introduced in Ref. [6], right panels, particle statistics does not seem to play nfich
where the integrals of motion of the system are taken into acy rple.) Lower temperatures, for whicy, and S, are seen
count. The many-body density matrix of the GGE s giventg depart, imply initial states whose energies are closétedo
by pece = Zg'e= 2= Anln, whereZgge = Trle™=*=I»],  edge of the energy spectrum. For finite systems, thermaliza-
{fm} is a complete set of conserved quantities, apdare  tion has been argued not to occur in those cases [8], and, from
the Lagrange multipliers fixed by the initial conditiohns, = our results here, we expect that the idea of a thermodynamic
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FIG. 2: (Color online) Normalized distribution function efiergy.

i l;' I 1] Bosonic system/, = 24, T' = 3.0 and the values of = V' are
- 0 | @ ohauta 4 a _ indicated. Top panels: quench fromi = 0.5, Vi = 2.0; bot-
- () b @ sb ; tom panels: quench fromy = 2.0, Vini = 0.5. Solid smooth line:
001 '0"0'1"'(; 104 ’ "1""1 — 'q"'[)'(iz : 9'4""'1 best Gaussian fity'2ra) e~ (P ~"*/*) for parameters andb;
' t=V' = dashed line{v/2r6 E) e~ (B~ Fn)*/(255%),

FIG. 1: (Color online) Entropies v& = V'. Left: bosons; right:

fermions; top: quench fromn = 0.5, Vi = 2.0; bottom: quench . .
from i = 2.0, Vi = 0.5. Filled symbols: d-entropy (1); empty ligible in chaotic systems and only the smooth (measurable)

symbols:S, (2); O T = 15,07 = 2.0; AT = 3.0. All panels:  part of the energy distribution contributes to the entropy o

1/3-filling and Z = 24; insets of panels () and (c) shawi /S, for the system. Also, the close agreement betwggmand S,,,

L = 24, thick (red) line, and. = 21, thin (black) line forl" = 3.0.  in the insets of Fig. 1(b) and 1(d), suggests tfiais indeed

Solid lines in the insets of panels (b) and (d), from bottonto® e proper entropy to characterize isolated quantum sgstem

microcanonical entropy; canonical entropy for eigenstates with after relaxation. To further support these findings, we gmes

k = 0 and the same parity as the initial state;for eigenstates with Its for th ) distribution in Ei h ' .

= 0 and both parities; anf. for all eigenstates witlv = 8. resu.ts or the energy distribution in Fig. 2',W dﬂé(E,) IS

confirmed to become smoother and approximately given by a
Gaussian function in the nonintegrable regime.

description will break down if the temperature is sufficignt _ Figure 2 shows the distribution function of energy for HCBs
low. Increasing the system size is expected to increasethe rfOr quenches in the integrable (left) and chaotic (right) do
gion of temperatures over which a thermodynamic descriptio M&ins.  The sparsity of the density matrix in the integrable
will be valid. Figure 1 also shows that different initial s~ IMit is reflected by large and well separated peaks, white fo
give slightly different quantitative results (top vs battpan-  the nonintegrable casé’(E) algpfoaghes a Gaussian shape
els), although the overall qualitative behavior is the same ~ Similar to (\/%5E)_1€_.(E_E‘“i) /(.26E ), as shown with the
The insets in Fig. 1(b) and 1(d), depict a comparison befits- The shape of’(E) is approximately determined by the
tweenS, and the equilibrium entropies in thermodynamic en-Product of the average weight of the components of the Initia
sembles whose energy has been chosen to be the same of g_ggte and the density of states. The Igtter is Qausaan and th
initial state after the quench. Explicit results for the roic ~ first depends on the strength of the interactions that lead to
canonical entropy witd E determined by the energy uncer- chaos, it becomes Gaussian for large interactions [14,A6].
tainty are in surprisingly good agreement with thoss,gfUp ~ PIlot of pn, vs energy, on the other hand, does not capture so
to a non-extensive constant, the canonical enti§ipyan also ~ clearly the integrable-chaos transition [17]. _
be written in the same form &, (2) if we use the canonical  |ntegrablesystems. We consider a 1D HCB model with NN
width §E? = —9sE. Results forS, are shown for three dif- hopping and an external potential described by,
ferent sets of eigenstates: (i) all the states inXheector, (ii) 1 I -
only the states in th&/-sector withk = 0, (iii) only the states _ Ty AT\ iy
in the N-sector withk = 0 and the same parity as the initial Hs =~ Z(bjb'7+1 +He) +AZCOS ( P ) bjbs- ()
state. The latter, as expected, is the closest tqalso com-
puted from eigenstates in the same symmetry sectpfi@s)  This model (HCBs in a superlattice) is exactly solvable as it
andSy. In the thermodynamic limit, all three sets of eigen- maps to spinless noninteracting fermions (see e.g., Rej).[2
states should produce the same leading contributiof.to  Here, the periodP is taken to beP = 5, t = 1, and the
but for finite systems it is necessary to take into account disamplitudeA assumes the values 4, 8, 12, and 16. We study
crete symmetries in order to get an accurate thermodynamigystems withL, = 20, 25. . .55 always at 1/5 filling. For the
description of the equilibrium ensemble. guench, we start with the ground state of (5) with= 0 and
The fact thatS,;/S,,, — 1 in the chaotic limit and that the evolve the system with a superlatticé # 0) and vice-versa.
agreementimproves with system size provide an important inNote that open boundary conditions are used in this case.
dication thatS; is small and subextensive. Information con-  We first study how the deviation &f; from S, as quanti-
tained in the fluctuations of the density matrix becomes negfied by 5S¢ /S, scales with increasing lattice size for different

J=1 J=1



guenches. As shown in Figs. 3 (a) and (8),/S,, does not

4

crocanonical entropy. In particular, the fact ti$gtcoincides

decrease a& increases. As a matter of fact, for the sizes thatwith S,,, up to subextensive corrections and is thus determined

we can study, we find indications théit /.S, will saturate to a

only by the energy of the system implies that basic thermody-

finite value in the thermodynamic limit. Hence, for these-sys namic relations can be applied to nonintegrable isolatsed sy
temssS, is not expected to be equivalent to the microcanonicatems (see also discussion in Ref. [4]). In the integrablétlim
entropy, as already advanced in Ref. [4].

S/S,

S/S,

0.2

0.1
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we demonstrated th&t; is additive, but found it to be smaller,
and to exhibit a different scaling prefactor, than the gnyrof
generalized ensembles (recently shown to properly describ
observables after relaxation following a quench). Ourltesu
open further questions as to how to characterize the thermo-
dynamic properties of isolated integrable systems, anadl als
motivate further studies for nonintegrable systems, ireotd

2o AR LD | oAt verify the scaling of5; with system size and compare it to the
o R A Mt SRR one of the entropy in conventional statistical ensembles.
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FIG. 3: (Color online) Entropy vs system size. Panel (a):nfro
top to bottom, quench tolsn = 4,8,12,16; panel (b): quench
from Aini = 4,8,12,16, curves closely superpose. Lower pan-
els: the quench type is indicated as (initi&)-(final A). Symbols:
Sq; dashed lines: GCE-entropy (the closest to the d-entromllin
cases studied); dotted lines: GE-entropy; dashed douditeetlline:
canonical entropy; and dash-dotted line: microcanonicabgy.
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