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A diagonal entropy, which depends only on the diagonal elements of the system’s density matrix in the
energy representation, has been recently introduced as theproper definition of thermodynamic entropy in out-of-
equilibrium quantum systems. We study this quantity after an interaction quench in lattice hard-core bosons and
spinless fermions, and after a local chemical potential quench in a system of hard-core bosons in a superlattice
potential. The former systems have a chaotic regime, where the diagonal entropy becomes equivalent to the
equilibrium microcanonical entropy, coinciding with the onset of thermalization. The latter system is integrable.
We show that its diagonal entropy is additive and close, but not equal, to the entropy of a generalized Gibbs
ensemble (GGE) that accounts for the conserved quantities at integrability. The difference between the two
entropies may be attributed to additional correlations present in the system and not captured by the GGE.
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The notion of entropy was first used by Clausius in the mid-
XIX century and was soon put in the context of statistical me-
chanics by Boltzmann and Gibbs. Generalized to quantum
mechanics by von Neumann in the 30’s and incorporated by
probability theory by Shannon in the 40’s, entropy has mani-
fested itself in different forms along the years. Despite the di-
versity, the consensus is that any physical definition of entropy
must conform with the postulates of thermodynamics [1, 2].

An appropriate definition of entropy, suitable also for iso-
lated quantum systems out of equilibrium, is fundamental for
advances in non-equilibrium statistical mechanics and fora
better understanding of recent experiments with quasi-isolated
quantum many-body systems, such as those realized with ul-
tracold atoms [3]. Von Neumann’s entropy, defined asSN =
−Tr(ρ̂ ln ρ̂), where ρ̂ is the many-body density matrix (the
Boltzmann constant here and throughout this paper is set to
unity), complies with the laws of thermodynamics when de-
scribing isolated quantum systems in equilibrium and quan-
tum systems interacting with an environment, but it becomes
problematic when dealing with closed systems out of equilib-
rium. Since in an isolated systemSN is conserved for any
process, this entropy is not consistent with the second law of
thermodynamics. This motivated the recent introduction of
the diagonal (d-)entropy [4], which is given by

Sd = −
∑

n

ρnn ln(ρnn), (1)

whereρnn are the diagonal elements of the density matrix in
the instantaneous energy basis. In equilibriumSd coincides
with the von Neumann’s entropy. In addition,Sd was argued
to satisfy the required properties of a thermodynamic entropy:
it increases when a system in equilibrium is taken out of equi-
librium, it is conserved for adiabatic processes, it is uniquely
related to the energy distribution (and as such satisfies thefun-
damental thermodynamic relation), and it is additive.

More specifically, it was indicated in Ref. [4] that the d-
entropy should be equivalent to the equilibrium microcanoni-
cal entropy when the energy fluctuations are subextensive and

the energy distribution is not sparse, assumptions that areex-
pected to hold in nonintegrable systems. For integrable sys-
tems, the existence of a complete set of nontrivial conserved
quantities [5] invalidates, in general, those assumptions, and
precludes those systems from reaching thermal equilibrium.
However, it has been shown that few-body observables after
equilibration can still be described by a Generalized GibbsEn-
semble (GGE) [6]. The GGE is a grand-canonical statistical
ensemble subjected to the constraints imposed by the indepen-
dent integrals of motion (see also Refs. [7]).

Here, we study the d-entropy in isolated quantum systems
after a quench in both integrable and nonintegrable regimes.
We consider two kinds of quenches in one-dimension (1D): an
interaction quench for hard-core bosons (HCBs) and spinless
fermions, which have a nonintegrable (chaotic) regime [8],
and a local chemical potential quench for HCBs (or spin-
less fermions) with a superlattice potential, which are inte-
grable [6]. In the first case, as the system transitions to
chaos, we show that the distribution function of energy be-
comes Gaussian-like and the d-entropy approaches the ther-
modynamic entropy. This indicates that thermodynamically
the system becomes indistinguishable from a thermal state.In
the second case,Sd is shown to be additive and its value to be
closest to the value of the entropy of a generalized ensemble.
The differences between the two entropies scale linearly with
the system size suggesting that there are additional correla-
tions between degrees of freedom not captured by the gener-
alized ensemble [9].

Quench and entropies. We consider a particular initial
state|ψini〉 which is an eigenstate of a certain initial Hamil-
tonian. At timeτ = 0, the Hamiltonian is instantaneously
changed (quenched) to a new one with eigenstates|Ψn〉 and
eigenvaluesEn. The initial state then evolves as|ψ(τ)〉 =
∑

n Cne
−iEnτ |Ψn〉, whereCn = 〈Ψn|ψini〉 and |Cn|2 cor-

respond to the diagonal elements,ρnn, of the density matrix,
ρ̂(τ) = |ψ(τ)〉〈ψ(τ)|.

For a generic system with a nondegenerate and incommen-
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surate spectrum, the expectation value of a generic few-body
observable (̂O) was shown to relax to the infinite time average

〈Ô(t)〉 =
∑

n ρnnOnn, which depends only on the diagonal
elementsρnn andOnn = 〈Ψn|Ô|Ψn〉 [10, 11]. Thus, the d-
entropy (1) is the entropy of the diagonal ensemble as defined
by the initial state in the energy representation. Formally, in
the present case of a sudden quench,Sd is equivalent to the
von Neumann’s entropy of the time averaged density matrix.

The d-entropy resembles the Shannon (information) en-
tropy, but with no arbitrariness in the basis [12]. The differ-
ence betweenSd and thermodynamic entropies can serve to
measure additional information contained in the diagonal part
of the density matrix and not in the equilibrium ensemble.

One may also write the d-entropy as the difference of a
smoothSd and a fluctuatingSf partSd = Ss +Sf [4], where

Ss =
∑

n

ρnn ln[η(En)δE], (2)

Sf = −
∑

n

ρnn ln[ρnnη(En)δE]. (3)

Hereη(En) is the density of states at energyEn: η(E) =
∑

n δ(E − En) and δE2 is the energy variance:δE2 =
∑

n ρnn(E−Eini)
2, whereEini = 〈ψini|H |ψini〉 is the expec-

tation value of the quenched Hamiltonian with respect to the
initial state. In the continuum limit,Ss =

∫

dEW (E)Sm(E)
and Sf =

∫

dEW (E) ln[W (E)δE], where W (E) =
∑

n ρnnδ(E − En) is the energy distribution [15]. InSs, the
microcanonical entropy,Sm(E) = ln[η(E)δE], is the log-
arithm of the total number of accessible states in the range
of energy[E − δE/2, E + δE/2]. If the system is large
and finite-size effects become negligible, then up to nonex-
tensive corrections,Sm becomes equal to the canonical en-
tropy, Sc = −

∑

n[Z
−1e−En/T ln(Z−1e−En/T )], whereT

is the temperature related to the energy of the system and
Z =

∑

n e
−En/T is the partition function (see Ref. [17]).

WhenW (E) is narrow, so thatδE is subextensive,Ss be-
comes equivalent to the equilibrium microcanonical entropy.
Moreover, if in additionW (E) is a smooth function of en-
ergy, a Gaussian in particular, thenSf is also subextensive.
These features are expected to be generic for the nonintegrable
(chaotic) regime, where the eigenstates (away from the edges
of the spectrum of systems with few-body interactions) be-
come pseudo-random vectors [8, 18].

In the integrable limit, on the other hand, a nontrivial com-
plete set of conserved quantities reduce the number of eigen-
states of the Hamiltonian that have a nonzero overlap with the
initial state [11, 19], soρnn becomes sparse andSf exten-
sive. In this case, both termsSs andSf are expected to con-
tribute to the d-entropy. It then becomes appropriate to com-
pareSd with the entropy of the GGE introduced in Ref. [6],
where the integrals of motion of the system are taken into ac-
count. The many-body density matrix of the GGE is given
by ρ̂GGE = Z−1

G e−
∑

λmÎm , whereZGGE = Tr[e−
∑

λm Îm ],
{Îm} is a complete set of conserved quantities, andλm are
the Lagrange multipliers fixed by the initial conditionsλm =

ln[(1 − 〈ψini |Îm|ψini〉)/〈ψini |Îm|ψini〉]. Since the GGE is a
grand-canonical ensemble, which can suffer from large finite
size effects for small systems, in addition to the entropy inthe
GGE,SGGE, we also compute the entropy in its canonical ver-
sion (GCE) as the traceSGCE = Tr[ρ̂GGE ln(ρ̂GGE)]can where
only eigenstates of the Hamiltonian with the same number of
particles contribute to the trace.

Chaotic systems. We consider periodic 1D chains with
nearest-neighbor (NN) and next-nearest-neighbor (NNN)
hopping and interaction, with the following Hamiltonian

HB =

L
∑

j=1

[

−t
(

b̂†j b̂j+1 + H.c.
)

− t′
(

b̂†j b̂j+2 + H.c.
)

+ (4)

V

(

n̂b
j −

1

2

)(

n̂b
j+1 −

1

2

)

+ V ′

(

n̂b
j −

1

2

)(

n̂b
j+2 −

1

2

)]

for hard-core bosons and similarly for spinless fermions (with
b̂j → f̂j , b̂

†
j → f̂ †

j , and n̂b
j → n̂f

j ), where standard nota-
tion has been used [8]. We takeL to be the lattice size and
N = L/3 to be the number of particles. Since the system
is translational invariant, each sector withN particles is fur-
ther decomposed into independent blocks each one associated
with a total momentumk. Moreover, in the particular case of
k = 0, parity is also conserved. We use full exact diagonaliza-
tion to compute all eigenstates of Hamiltonian (4). There are
no random elements in this or in the following Hamiltonian
investigated, so no averages are taken in this paper.

The initial states considered are eigenstates of Eq. (4) with
parameterstini , Vini , t

′, V ′ belonging to thek = 0 subspace.
The final Hamiltonian (after the quench) hast = V = 1
and the same initial values oft′ = V ′. The initial states
are selected such that their energiesEini in the final quenched
Hamiltonian are the closest toE at a chosen effective tem-
peratureT , computed asE = Z−1

∑

nEne
−En/T . When

t′ = V ′ = 0 the system is integrable, while the addition of
NNN terms eventually induces the onset of chaos [8].

The use of full exact diagonalization for the models above
limits the system sizes that can be studied to a maximum of 8
particles in 24 lattice sites and therefore prevents properscal-
ing studies of the entropies with increasing system size. This
is left to the integrable quenches where larger lattices canbe
explored. Here we compareSd, Ss, Sf , Sm, andSc for the
two largest system sizes available and for various Hamiltonian
parameters as one departs from the integrable point.

The main panels in Fig. 1 depictSd andSs for systems
with L = 24 at different effective temperatures ast′, V ′ in-
creases and the system departs from the integrable point. An
agreement betweenSd andSs can be seen as one approaches
the chaotic limit, improving with temperature and system size
[cf. insets in Fig. 1(a) and 1(c)]. (By comparing the left and
right panels, particle statistics does not seem to play muchof
a role.) Lower temperatures, for whichSd andSs are seen
to depart, imply initial states whose energies are closer tothe
edge of the energy spectrum. For finite systems, thermaliza-
tion has been argued not to occur in those cases [8], and, from
our results here, we expect that the idea of a thermodynamic
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FIG. 1: (Color online) Entropies vst′ = V ′. Left: bosons; right:
fermions; top: quench fromtini = 0.5, Vini = 2.0; bottom: quench
from tini = 2.0, Vini = 0.5. Filled symbols: d-entropy (1); empty
symbols:Ss (2); © T = 1.5; � T = 2.0; △ T = 3.0. All panels:
1/3-filling andL = 24; insets of panels (a) and (c) showSd/Ss for
L = 24, thick (red) line, andL = 21, thin (black) line forT = 3.0.
Solid lines in the insets of panels (b) and (d), from bottom totop:
microcanonical entropy; canonical entropySc for eigenstates with
k = 0 and the same parity as the initial state;Sc for eigenstates with
k = 0 and both parities; andSc for all eigenstates withN = 8.

description will break down if the temperature is sufficiently
low. Increasing the system size is expected to increase the re-
gion of temperatures over which a thermodynamic description
will be valid. Figure 1 also shows that different initial states
give slightly different quantitative results (top vs bottom pan-
els), although the overall qualitative behavior is the same.

The insets in Fig. 1(b) and 1(d), depict a comparison be-
tweenSd and the equilibrium entropies in thermodynamic en-
sembles whose energy has been chosen to be the same of the
initial state after the quench. Explicit results for the micro-
canonical entropy withδE determined by the energy uncer-
tainty are in surprisingly good agreement with those ofSd. Up
to a non-extensive constant, the canonical entropySc can also
be written in the same form asSm (2) if we use the canonical
width δE2

c = −∂βE. Results forSc are shown for three dif-
ferent sets of eigenstates: (i) all the states in theN -sector, (ii)
only the states in theN -sector withk = 0, (iii) only the states
in theN -sector withk = 0 and the same parity as the initial
state. The latter, as expected, is the closest toSm (also com-
puted from eigenstates in the same symmetry sector as|ψini〉)
andSd. In the thermodynamic limit, all three sets of eigen-
states should produce the same leading contribution toSc,
but for finite systems it is necessary to take into account dis-
crete symmetries in order to get an accurate thermodynamic
description of the equilibrium ensemble.

The fact thatSd/Sm → 1 in the chaotic limit and that the
agreement improves with system size provide an important in-
dication thatSf is small and subextensive. Information con-
tained in the fluctuations of the density matrix becomes neg-
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FIG. 2: (Color online) Normalized distribution function ofenergy.
Bosonic system,L = 24, T = 3.0 and the values oft′ = V ′ are
indicated. Top panels: quench fromtini = 0.5, Vini = 2.0; bot-
tom panels: quench fromtini = 2.0, Vini = 0.5. Solid smooth line:
best Gaussian fit(

√
2πa)−1e−(E−b)2/(2a2) for parametersa andb;

dashed line:(
√
2πδE)−1e−(E−Eini)

2/(2δE2).

ligible in chaotic systems and only the smooth (measurable)
part of the energy distribution contributes to the entropy of
the system. Also, the close agreement betweenSd andSm

in the insets of Fig. 1(b) and 1(d), suggests thatSd is indeed
the proper entropy to characterize isolated quantum systems
after relaxation. To further support these findings, we present
results for the energy distribution in Fig. 2, whereW (E) is
confirmed to become smoother and approximately given by a
Gaussian function in the nonintegrable regime.

Figure 2 shows the distribution function of energy for HCBs
for quenches in the integrable (left) and chaotic (right) do-
mains. The sparsity of the density matrix in the integrable
limit is reflected by large and well separated peaks, while for
the nonintegrable caseW (E) approaches a Gaussian shape
similar to (

√
2πδE)−1e−(E−Eini)

2/(2δE2), as shown with the
fits. The shape ofW (E) is approximately determined by the
product of the average weight of the components of the initial
state and the density of states. The latter is Gaussian and the
first depends on the strength of the interactions that lead to
chaos, it becomes Gaussian for large interactions [14, 16].A
plot of ρnn vs energy, on the other hand, does not capture so
clearly the integrable-chaos transition [17].

Integrable systems. We consider a 1D HCB model with NN
hopping and an external potential described by,

HS = −t
L−1
∑

j=1

(b†jbj+1 +H.c.)+A

L
∑

j=1

cos

(

2πj

P

)

b†jbj . (5)

This model (HCBs in a superlattice) is exactly solvable as it
maps to spinless noninteracting fermions (see e.g., Ref. [20]).
Here, the periodP is taken to beP = 5, t = 1, and the
amplitudeA assumes the values 4, 8, 12, and 16. We study
systems withL = 20, 25 . . . 55 always at 1/5 filling. For the
quench, we start with the ground state of (5) withA = 0 and
evolve the system with a superlattice(A 6= 0) and vice-versa.
Note that open boundary conditions are used in this case.

We first study how the deviation ofSd from Ss, as quanti-
fied bySf/Sd, scales with increasing lattice size for different
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quenches. As shown in Figs. 3 (a) and (b),Sf/Sd, does not
decrease asL increases. As a matter of fact, for the sizes that
we can study, we find indications thatSf/Sd will saturate to a
finite value in the thermodynamic limit. Hence, for these sys-
temsSd is not expected to be equivalent to the microcanonical
entropy, as already advanced in Ref. [4].
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FIG. 3: (Color online) Entropy vs system size. Panel (a): from
top to bottom, quench toAfin = 4, 8, 12, 16; panel (b): quench
from Aini = 4, 8, 12, 16, curves closely superpose. Lower pan-
els: the quench type is indicated as (initialA)-(final A). Symbols:
Sd; dashed lines: GCE-entropy (the closest to the d-entropy inall
cases studied); dotted lines: GE-entropy; dashed double-dotted line:
canonical entropy; and dash-dotted line: microcanonical entropy.

In the lower panels of Fig. 3, we study the scaling ofSd

with increasing system size for the same quenches. A clear
linear behavior is seen, demonstrating thatSd is indeed addi-
tive. In these panels, we also show the microcanonical (with
δE determined as for the interaction quenches) and canon-
ical ensembles. The latter two can be seen to increase lin-
early withL and with a similar slope. These two entropies are
clearly greater thanSd indicating that the diagonal ensemble
in this case is highly constrained. Finally, we show results
for the GGE and GCE entropies. They also increase linearly
with system size and with a similar slope, showing that in the
thermodynamic limit their difference should be subextensive.
Interestingly, the slopes of the GGE and GCE are greater than
the slope of the diagonal entropy. The difference in slopes
suggests the existence of additional correlations in the system
not fully captured by the generalized ensemble. The diagonal
entropy in this case is a clear observable independent mea-
sure of such correlations. This finding opens an important
question as to which ensemble should be appropriate to char-
acterize the thermodynamic properties of isolated integrable
quantum systems after relaxation following a quench and for
which observables these additional correlations are relevant.

Summary. We presented a study of the diagonal-entropy
following quenches in integrable and nonintegrable isolated
quantum systems. In the nonintegrable regime, we showed
thatSd has the properties expected from an equilibrium mi-

crocanonical entropy. In particular, the fact thatSd coincides
with Sm up to subextensive corrections and is thus determined
only by the energy of the system implies that basic thermody-
namic relations can be applied to nonintegrable isolated sys-
tems (see also discussion in Ref. [4]). In the integrable limit,
we demonstrated thatSd is additive, but found it to be smaller,
and to exhibit a different scaling prefactor, than the entropy of
generalized ensembles (recently shown to properly describe
observables after relaxation following a quench). Our results
open further questions as to how to characterize the thermo-
dynamic properties of isolated integrable systems, and also
motivate further studies for nonintegrable systems, in order to
verify the scaling ofSd with system size and compare it to the
one of the entropy in conventional statistical ensembles.
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