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We study the computational difficulty of computing the ground state degeneracy and the density
of states for local Hamiltonians. We show that the difficulty of both problems is exactly captured by
a class which we call #BQP, which is the counting version of the quantum complexity class QMA.
We show that #BQP is not harder than its classical counting counterpart #P, which in turn implies
that computing the ground state degeneracy or the density of states for classical Hamiltonians is
just as hard as it is for quantum Hamiltonians.

Understanding the physical properties of correlated
quantum many-body systems is a problem of central im-
portance in condensed matter physics. The density of
states, defined as the number of energy eigenstates per
energy interval, plays a particularly crucial role in this
endeavor. It is a key ingredient when deriving many
thermodynamic properties from microscopic models, in-
cluding specific heat capacity, thermal conductivity, band
structure, and (near the Fermi energy) most electronic
properties of metals. Computing the density of states
can be a daunting task however, as it in principle involves
diagonalizing a Hamiltonian acting on an exponentially
large space, though other more efficient approaches which
might take advantage of the structure of a given problem
are not a priori ruled out.

In this Letter, we precisely quantify the difficulty of
computing the density of states by using the powerful
tools of quantum complexity theory. Quantum complex-
ity aims at generalizing the well-established field of clas-
sical complexity theory to assess the difficulty of tasks re-
lated to quantum mechanical problems, concerning both
the classical difficulty of simulating quantum systems as
well as the fundamental limits to the power of quan-
tum computers. In particular, quantum complexity the-
ory has managed to explain the difficulty of computing
ground state properties of quantum spin systems in vari-
ous settings, such as two-dimensional (2D) lattices [1] and
even one-dimensional (1D) chains [2], as well as fermionic
systems [3].

We will determine the computational difficulty of two
problems: First, computing the density of states of a lo-
cal Hamiltonian, and second, counting the ground state
degeneracy of a local gapped Hamiltonian; in both cases,
the result holds even if the Hamiltonian is restricted to
act on a 2D lattice of qubits, or on a 1D chain. To this
end, we will introduce the quantum counting class #BQP
(sharp BQP), which constitutes the natural counting ver-
sion of the class QMA (Quantum Merlin Arthur) which it-
self captures the difficulty of computing the ground state
energy of a local Hamiltonian [4, 5]. Vaguely speaking,
#BQP counts the number of possible “quantum solu-
tions” to a quantum problem that can be verified using a

quantum computer. We show that both problems, com-
puting the density of states and counting the ground state
degeneracy, are complete problems for the class #BQP,
i.e., they are among the hardest problems in this class.

Having quantified the difficulty of computing the den-
sity of states and counting the number of ground states,
we proceed to relate #BQP to known classical counting
complexity classes, and show that #BQP equals #P (un-
der weakly parsimonious reductions). Here, the complex-
ity class #P counts the number of satisfying assignments
to any efficiently computable boolean function. This can
be a very hard problem which is believed to take exponen-
tial time; in particular, it is at least as hard as deciding
whether the function has at least one satisfying input,
i.e., the complexity class NP. Examples for #P-complete
problems (i.e., the hardest problems in that class) include
counting the number of colorings of a graph, or com-
puting the permanent of a matrix with binary entries.
Phrased in terms of Hamiltonians, what we show is that
computing the density of states and counting the ground
state degeneracy of a classical spin system is just as hard
as solving the same problem for a quantum Hamiltonian.

Quantum complexity classes.—Let us start by intro-
ducing the relevant complexity classes. The central role
in the following is taken by the verifier V , which veri-
fies “quantum solutions” (also called proofs) to a given
problem. More formally, a verifier checking an n-qubit
quantum proof (that is, a quantum state |ψ〉) consists of a
T = poly(n) length quantum circuit U = UT · · ·U1 (with
local gates Ut) acting on m = poly(n) qubits, which takes
the n-qubit quantum state |ψ〉I as an input, together
with m − n initialized ancillas, |0〉A ≡ |0 · · · 0〉A, applies
U , and finally measures the first qubit in the {|0〉1, |1〉1}
basis to return 1 (“proof accepted”) or 0 (“proof re-
jected”). Then, the class QMA contains all problems of
the form: “Decide whether there exists a |ψ〉 such that
pacc(V (ψ)) > a, or whether pacc(V (ψ)) < b for all |ψ〉,
for some chosen a− b > 1/poly(n), given that one is the
case”. Here, the acceptance probability of a state |ψ〉 is
pacc(V (ψ)) := 〈ψ|Ω|ψ〉, with

Ω = (1I ⊗ 〈0|A)U†(|1〉〈1|1 ⊗ 1)U(1I ⊗ |0〉A) , (1)
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FIG. 1: A QMA verifier consists of a sequence of T local uni-
tary gates acting on the “quantum proof” |ψ〉 and an ancillary
register initialized to |0〉. The final measurement on the first
qubit returns |1〉 or |0〉 to accept or reject the proof, respec-
tively. Transition probabilities can be computed by doing a
“path integral” over all intermediate configurations (ik)k.

which we illustrate in Fig. 1.

The idea behind this definition is that QMA quanti-
fies the difficulty of computing the ground state energy
E0(H) of a local Hamiltonian H up to 1/poly(n) accu-
racy. Let the verifier be a circuit estimating 〈ψ|H|ψ〉;
then a black box solving QMA problems can be used
to compute E0(H) up to 1/poly(n) accuracy by binary
search using a single QMA query. Note also that QMA is
the quantum version of the class NP, where one is given
an efficiently computable boolean function f(x) ∈ {0, 1}
and one must figure out if there is an x such that
f(x) = 1.

The class NP has a natural counting version, known
as #P. Here, the task is to determine the number rather
than the existence of satisfying inputs, i.e., to compute
|{x : f(x) = 1}|. We will now analogously define #BQP,
the counting version of QMA. Consider the verifying map
Ω of Eq. (1) for a QMA problem, with the additional
promise that Ω does not have eigenvalues between a and
b, a − b > 1/poly(n). Then the class #BQP consists of
all problems of the form “compute the dimension of the
space spanned by all eigenvectors with eigenvalues ≥ a”.

An equivalent definition for #BQP (cf. also [6, 7]) is
the following: Consider a verifier Ω with the additional
promise that there exist subspacesA⊕R = C2n

such that
〈ψ|Ω|ψ〉 ≥ a for all |ψ〉 ∈ A, and 〈ψ|Ω|ψ〉 ≤ b for all |ψ〉 ∈
R, where again a−b > 1/poly(n) – we can think of A and
R as containing the good and bad witnesses, respectively.
(Note that there will always be “mediocre” witnesses—
the question is whether there exists a decomposition into
a good and a bad witness space.) Then, #BQP consists of
all problems of the form “compute dim A”. This number
is well-defined, i.e., independent of the choice of A and
R, and moreover, one can easily show that it is equivalent
to the definition above, cf. the Supplementary Material.

The gap promise we impose on the spectrum of Ω is
not present in the definition of QMA (though similarly
restricted versions of QMA were defined in [6, 7]). Nev-
ertheless, this promise emerges naturally when consider-
ing the counting version: QMA captures the difficulty of

determining the existence of an input state with accep-
tance probability above a, up to a “grace interval” [b, a]
in which mistakes are tolerated (i.e., if the largest eigen-
value of Ω is in [b, a], the oracle can return either out-
come). Correspondingly, #BQP captures the difficulty
of counting the number of eigenvalues above a, where
eivenvalues in the grace interval [b, a] can be miscounted.
The reason why we choose to define #BQP with a gap
promise rather than with a grace interval is the same as
for QMA, namely to have a unique outcome associated
with any input.

Similarly, the idea of the Hamiltonian formulation of
the problem which we will discuss below is to ask for the
number of eigenstates in a certain energy interval, where
states which are in some small 1/poly(n) neighborhood
of this interval may be miscounted; again, for reasons of
rigor we choose to consider only Hamiltonians with no
eigenstates in that interval. It should be noted, however,
that all of the equivalence proofs we give equally apply
if we choose to allow for miscounting of states in those
grace intervals instead of requiring them to be empty, as
the proofs do not make use of the gap promise itself, but
rather show that all states outside those grace intervals
are mapped (and thus counted) correctly. Thus, while
the actual number returned by the grace interval formu-
lation of the counting problems might change under those
mappings due to different treatment of states in the grace
interval, it will still be in the correct range.

The class #BQP inherits the important property from
QMA of being stable under amplification, that is, the def-
inition of #BQP is not sensitive to the choice of a and
b. In particular, any a − b > 1/poly(n) can be ampli-
fied (by building a new poly-size Ω′ from Ω) such that
a′ = 1 − exp(−poly(n)), b′ = exp(−poly(n)), and keep-
ing the eigenvalue gap between a′ and b′, by using a
construction called strong amplification, cf. Ref. [8]; as
shown there, strong amplification acts on all eigenval-
ues independently and thus also applies to #BQP. The
crucial point is that strong amplification works without
changing the proof itself, compared to weak amplifica-
tion which takes multiple copies of the proof as an input.
While this is fine for QMA, it does change the dimension
of the accepting subspace in an unpredictable way and is
thus not an option for the amplification of #BQP.

Complexity of computing the density of states.—Let
us now show why the class #BQP is relevant for physical
applications. In particular, we are going to show that
computing the density of states of a local n-spin Hamil-
tonian H =

∑
iHi with few-body terms Hi, ‖Hi‖ ≤ 1,

up to accuracy 1/poly(n), is a problem which is complete
for #BQP, i.e., it is as hard as any problem in #BQP can
be. The same holds true for the (a priori weaker) prob-
lem of counting the ground state degeneracy of a local
Hamiltonian, given a 1/poly(n) spectral gap above (note
that Bravyi et al. [9] suggested this as a definition for
a quantum counting class). We can impose additional
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restrictions on the interaction structure of our Hamilto-
nian, and as we will see, the hardness is preserved even
for 2D lattices of qubits, or 1D systems.

The problem dos (density of states) is defined as fol-
lows: Given a local Hamiltonian H =

∑
iHi, compute

the number of orthogonal eigenstates with eigenvalues in
an interval [E1, E2] with E2−E1 > 1/poly(n), where we
do not allow for eigenvalues within a small grace interval
of width ∆ = (E2 −E1)/poly(n) centerd around E1 and
E2; alternatively, we can allow for errorneous counts of
eigenstates in that interval. Second, the problem #lh
(sharp local Hamiltonian) corresponds to counting the
number of ground states of a local Hamiltonian which
has a spectral gap ∆ = 1/poly(n) above the ground state
subspace, given we are told the ground state energy, and
where we allow for a small splitting in the ground state
energies; again, we can alternatively allow to miscount
states in the grace interval.

Clearly, #lh is a special instance of dos, i.e., solving
#lh can be reduced to solving dos. In order to show
that dos is contained in #BQP, we can use a phase es-
timation circuit [10] to estimate the energy of any given
input |ψ〉 and only accept if its energy 〈ψ|H|ψ〉 is in the
interval [E1, E2]; as the desired accuracy ∆ = 1/poly(n),
this can be done efficiently. A detailed proof (using a
more elementary circuit) is given in the Supplementary
Material.

Let us now conversely show that #lh is a hard prob-
lem for #BQP, that is, any problem in #BQP can be
reduced to counting the ground states of some gapped
local Hamiltonian [18]. As in turn #lh can be reduced
to dos, which is contained in #BQP, this proves that
both #lh and dos are complete problems for #BQP,
i.e., they capture the full difficulty of this class. To this
end, we need to start from an arbitrary verifier circuit
U = UT · · ·U1 and construct a Hamiltonian which has as
many ground states as the circuit has accepting inputs
(corresponding to the outcome |1〉1 on the first qubit).
Let A and R be the eigenspaces of Ω [Eq. (1)] with eigen-
values ≥ a = 1 − 2−poly(n) and ≤ b = 2−poly(n), respec-
tively, and define U [R] := {U |ψ〉I |0〉A : |ψ〉I ∈ R}.

We will follow Kitaev’s original construction for a
Hamiltonian encoding a QMA verifier circuit [4, 5], which
for any proof |ψ〉I ∈ A has the “proof history” |Φ〉 =∑T
t=0 Ut · · ·U1|ψ〉I |0〉A|t〉T as its ground state, where

the third register is used as a clock. The Hamiltonian
H = Hinit +

∑T
t=1Hevol(t) + Hfinal has three types of

terms: Hinit = 1⊗ (1− |0〉〈0|A)⊗ |0〉〈0|T makes sure the
ancilla is initialized, Hevol(t) = −Ut ⊗ |t〉〈t − 1|T + h.c.
ensures proper evolution from t − 1 to t, and Hfinal =
ΠU [R] ⊗ |T 〉〈T |T gives an energy penalty to states |Φ〉
built from proofs |ψ〉I ∈ R. Note that our Hfinal differs
from the usual choice |0〉〈0|1 ⊗ 1⊗ |T 〉〈T |T and is in fact
non-local; as we show in the Supplementary Material,
this does not significantly change the relevant spectral
properties (in particular, we keep the 1/poly(n) gap, and

the ground state subspace is split at most exponentially).
With this choice of Hfinal, H acts independently on the
subspaces spanned by {Ut · · ·U1|ψ〉I |x〉A|t〉T }t=0,...,T for
any |ψ〉 ∈ A or |ψ〉 ∈ R, and |x〉A the computational
basis, and the restriction of H to any of these subspaces
describes a random walk which is characterized by the
choice of |ψ〉I and the number of 1’s in |x〉A. These cases
can be analyzed independently (see Supplementary Ma-
terial), and it follows that H has a dimA-fold degenerate
ground state space with a 1/poly(n) gap above, proving
#BQP-hardness of #lh.

This shows that #lh is #BQP-hard for a Hamiltonian
which is a sum of log T -local terms (i.e., each term acts
on log T sites), as the clock register is of size log T . In
order to obtain a k-body Hamiltonian, Kitaev suggested
to use a unary encoding of the clock (i.e., |t〉T is encoded
as |1 · · · 10 · · · 0〉, with t 1’s), so that each Hamiltonian
term only acts on three qubits of the clock. However,
this makes the Hilbert space of the clock too big, and
terms need to be added to the Hamiltonian to penal-
ize illegal clock configurations. These terms divide the
Hilbert space into two parts, Hlegal⊕Hillegal. Here, Hlegal

contains only legal clock states, whereas Hillegal contains
only configurations with illegal clock states [4, 5]. Since
no Hamiltonian term couples these two subspaces, the
Hamiltonian can be analyzed independently on the two
subspaces. It turns out that its restriction to Hillegal has
an at least 1/poly(n) higher energy, while on Hlegal, the
Hamiltonian is exactly the same as before. Thus, one
finds that the new Hamiltonian still has the right num-
ber of ground states, and a 1/poly(n) spectral gap. The
very same argument applies in the case of 1D Hamiltoni-
ans, using the QMA-construction of Ref. [2]: Again, the
Hamiltonian acts independently on a “legal” and an “ille-
gal” subspace, where the latter has a polynomially larger
energy, and the former reproduces the (low-energy) spec-
trum of the original Hamiltonian [11].

An alternative way to prove QMA-hardness on re-
stricted interaction graphs is to use so-called perturbation
gadgets, which yield the Hamiltonian of the Kitaev con-
struction above from a perturbative expansion; in partic-
ular, this way one can show QMA-hardness of Pauli-type
nearest-neighbor Hamiltonians on a 2D square lattice of
qubits [1]. As shown in Ref. [12], such gadgets do in fact
approximately preserve the whole low-energy part of the
spectrum, and thus, our #BQP–hardness proof for #lh
still applies to these classes of Hamiltonians. It should
be noted, however, that since the eigenvalues are only
preserved up to an error 1/poly(n), the splitting of the
ground state space will now be of order 1/poly(n); how-
ever, it can still be chosen to be polynomially smaller
than the spectral gap.

Quantum vs. classical counting complexity.—As we
have seen, the quantum counting class #BQP exactly
captures the difficulty of counting the degeneracy of
ground states and computing the density of states of local
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quantum Hamiltonians. In the following, we will relate
#BQP to classical counting classes and prove that #BQP
is equal to #P, counting the number of satisfying inputs
to a boolean function [19]. In physical terms, this shows
that counting the number of ground states or determining
the density of states for a quantum Hamiltonian is not
harder than either problem is for a classical Hamiltonian.

Clearly, #P is contained in #BQP, as the latter in-
cludes classical verifiers. It remains to be shown that
any #BQP problem can be solved by computing a #P
function. We start from a verifier operator Ω, Eq. (1),
and wish to show that the dimension of its accepting
subspace, i.e., the subspace A with eigenvalues ≥ a, can
be computed by counting satisfying inputs to some ef-
ficiently computable boolean function. Using amplifica-
tion, we can ensure that |dimA− tr Ω| ≤ 1

4 , i.e., we need
to compute tr Ω to accuracy 1

4 . This can be done using
a “path integral” method, which has been used previ-
ously to show containments of quantum classes in the
classical classes PP and #P (see e.g. [13]). We rewrite
tr Ω =

∑
ζ f(ζ) as a sum over products of transition prob-

abilities along a path ζ ≡ (i0, . . . , iN , j1, . . . , jN ), where

f(ζ) =〈i0|I〈0|AU†1 |j1〉〈j1|U
†
1 · · ·U

†
T |jT 〉× (2)

〈iT |
[
|0〉〈0|1 ⊗ 1

]
|iT 〉〈iT |UT · · ·U1|i0〉I |0〉A

(cf. Fig. 1). Since any such sum over an efficiently com-
putable f(ζ) can be determined by counting the satis-
fying inputs to some boolean formula (see the Supple-
mentary Material for details), it follows that Ω can be
computed using a single query to a black box solving #P
problems.

Summary and discussion.—In this work, we consid-
ered two problems: Computing the density of states and
computing the ground state degeneracy of a local Hamil-
tonian of a spin system. In order to capture the com-
putational difficulty of these problems we introduced the
quantum complexity class #BQP, the counting version
of the class QMA. We proved that this complexity class
exactly captures the difficulty of our two problems, even
when restricting to local Hamiltonians on 2D lattices of
qubits or to 1D chains, since all these problems are com-
plete problems for the class #BQP [20].

We have further shown that #BQP is no harder than
its classical counterpart #P. In particular this implies
that computing the density of states is no harder for
quantum Hamiltonians than it is for classical ones. While
this quantum-classical equivalence might seem surpris-
ing at the Hamiltonian level, it should be noted that
the classes #P and PP quite often form natural “upper
bounds” for many quantum and classical problems.

What about the problem of computing the density of
states for fermionic systems, such as many-electron sys-
tems? On the one hand, this problem will be still in
#BQP and thus #P, since any local fermionic Hamilto-
nian can be mapped via the Jordan-Wigner transform to

a (non-local) Hamiltonian on a spin system, whose energy
can still be estimated efficiently by a quantum circuit [14].
On the other hand, hardness of the problem for #BQP
can be shown e.g. by using the #BQP-hardness of #lh,
and encoding each spin using one fermion in two modes,
similar to [14]. Thus, computing the density of states for
fermionic systems is a #BQP-complete problem as well.
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Note added.—After completion of this work, we
learned that Shi and Zhang [15] have independently de-
fined #BQP and shown its relation to #P using the same
technique.
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