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We present experimental data and a theoretical interpretation of the conductance near the metal-
insulator transition in thin ferromagnetic Gd films of thickness b ≈ 2 - 10 nm. A large phase
relaxation rate caused by scattering of quasiparticles off spin wave excitations renders the dephasing
length Lφ . b in the range of sheet resistances considered, so that the effective dimension is d =
3. The conductivity data at different stages of disorder obey a fractional power-law temperature
dependence and collapse onto two scaling curves for the metallic and insulating regimes, indicating
an asymmetric metal-insulator transition with two distinctly different critical exponents; the best
fit is obtained for a dynamical exponent z ≈ 2.5 and a correlation (localization) length critical
exponent ν− ≈ 1.4 (ν+ ≈ 0.8) on the metallic (insulating) side.

PACS numbers: 75.45.+j, 75.50.Cc, 75.70.Ak

The metal-insulator (M-I) transition in disordered con-
ductors [1] has been one of the most extensively studied
cases of a quantum phase transition, both experimentally
and theoretically. In its simplest form it describes non-
interacting electrons in a disordered potential, where the
disorder can be controlled experimentally in a variety of
ways, e.g by systematic doping. One of the most dra-
matic predictions of the scaling theory[1] is the absence
of true metallic behavior in systems with dimension d ≤ 2
as verified in numerous experiments [2]. The other pre-
diction is the existence of a critical point in d > 2 where
the conductivity in the metallic phase goes to zero con-
tinuously with increasing disorder, in contrast to having
a minimum metallic conductivity [3]. Electron-electron
interactions are known to modify the behavior near a M-I
transition in a significant way [4], including the possibil-
ity of a metallic state in d = 2 [5].

Near the transition, the behavior is characterized by
power laws with critical exponents. For example, the dc
conductivity σ(λ), with λ being a measure of disorder,
follows a power law σ ∼ ts , where t = (1 − λ/λc) de-
notes the distance to the critical point at critical disorder
λc, and s is the conductivity exponent. The dynamical
conductivity at the critical point, on the other hand, is
characterized by the dynamical exponent z as σ(ω;λc) ∼
ω1/z. The correlation length on the metallic side (λ < λc)
diverges at the critical point as ξ ∼ t−ν− and the local-
ization length (λ > λc) diverges as ξ ∼ |t|−ν+ . In d = 3
dimensions the relation s = ν− holds. The exponents in
d = 3 have yet to be calculated in a reliable way. While
the critical exponents ν+ and ν− may in principle be dif-
ferent, all theoretical and experimental works so far have
either assumed or observed ν+ = ν−. In contrast, we
report here that for ferromagnetic thin films, the two ex-
ponents are distinctly different, describing a very unusual
asymmetric transition.

As for any quantum phase transition, the critical expo-
nents can not be measured experimentally at the T = 0
critical point but must be inferred from finite T mea-
surements. Therefore, the emphasis has been to obtain
the conductivity as a function of T , as close to T = 0 as
possible. Despite intense efforts over several decades [6],
it turned out to be rather difficult to access the critical
regime in a reliable way. While all such experiments con-
firm the continuous nature of the transition, the values
of the critical exponents remain controversial. Published
experimental values of s and z vary from s ≈ 0.5 [7],
s ≈ 1 [8, 9] to s ≈ 1.6 and from z ≈ 2 [10] to z ≈ 2.94
[11]. For the Anderson localization transition (omitting
interaction effects), numerical studies find s ≈ 1.6 [12]
while theoretical studies find z = 3 [13].
Theoretically, the scale dependent conductivity at fi-

nite T is obtained from σ(ω) by replacing ω by T .
The critical dynamical scaling is found even away from
the critical point in the regime defined by frequencies
ω ≥ ωξ =

1
τ (ξ/l)

−z. Here l and τ are the mean free path
and the momentum relaxation time, respectively. Near
the quantum critical point, σ(ω) obeys the scaling law,

σ(ω;λ) = ξ−1G(±1, ξω1/z), t ≷ 0. (1)

At the critical point, when ξ → ∞, it follows that
G(±1, ξω1/z) ∼ ξω1/z. Using the sheet resistance R0 as
the disorder parameter controlled in experiment and Rc

denoting the critical resistance so that ξ ∝ |R0 −Rc|
−ν±

where ν± is either ν+ or ν− depending on whether R0

is larger or smaller than Rc, and replacing ω by T , the
conductivity should obey the scaling law,

|ǫ|−ν±σ(T ;R0) = G(±1, |ǫ|−ν±T 1/z); ǫ ≡ R0−Rc. (2)

Below we will see that for thin ferromagnetic Gd films,
the exponent ν± is distinctly different on the two sides
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of the transition, i.e. ν+ 6= ν−. Such measurements on
ferromagnetic films have not been carried out in the past
because samples are highly air-sensitive; we use a special-
ized apparatus in which the sample can be transferred
without exposure to air from the high vacuum deposi-
tion chamber to an adjoining low-temperature cryostat
and electrically reconnected for transport measurements.

We study the conductivity near the M-I transition in
a thin-film geometry where it is possible to increase the
disorder directly by varying the film deposition rate, the
thickness and by annealing[14]. The resulting sheet resis-
tance is the single important parameter controlling the
distance to the critical point. Two series of thin films
of Gd (series 1 and series 2) were grown by r.f. mag-
netron sputtering through a shadow mask onto sapphire
substrates held at T = 130 K. The current and volt-
age leads of the deposited sample overlapped with pre-
deposited palladium contacts, thus allowing reliable elec-
trical connection with low contact resistance for in situ

measurements of the electrical properties. Immediately
after deposition the samples were transferred to the cryo-
stat and held at T = 77K or below where the samples
are stable. If the temperature is temporarily raised back
to the deposition temperature (130K), annealing marked
by a slow irreversible increase in resistance occurs.

To parameterize the amount of disorder in a given
film[15, 16], we use the longitudinal sheet resistance
R0 ≡ Rxx(T = 5K). In our experiments R0 spans
the range 4 kΩ < R0 < 70 kΩ, which for most of the
samples guarantees that the conductivity at all temper-
atures is fully determined by strongly localized quan-
tum wave packets. For thicker films at lower disor-
der strength (450 Ω < R0 < 2840 Ω), quantum cor-
rections due to weak localization and spin-wave medi-
ated electron-electron interactions have been observed
and interpreted[16].

Controlled thermal annealing allows us to advanta-
geously tune a single sample through successive stages of
increased disorder. Our series 1 samples comprise 5 sep-
arate depositions with two of the samples undergoing 12
successive anneals thus giving a total of 17 measurements
at different stages of disorder. Our series 2 samples com-
prise a single sample undergoing 15 successive anneals
for a total of 16 measurements spanning the critical re-
gion. The resistance was measured using four-terminal
dc techniques and excellent reproducibility between the
series 1 and series 2 samples was found.

We now argue why the films are effectively three di-
mensional. As discussed in Ref. [16], the phase relax-
ation rate τϕ in ferromagnetic films is dominated by the
scattering off spin wave excitations. For a spin-wave gap
∆ ≪ ~/τϕ as observed in Gd [17], the rate is given by [18]

~/τϕ = [nJ
2

π2~

D
D2+(A/~)2

T√
A
]2/3 in d = 3. Here n is the elec-

tron density, J̄ ≈ nJ ≈ 80 meV is the exchange energy
[19] and A ≈ J̄/k2F is the spin wave stiffness. The T -
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FIG. 1: Normalized conductivity as a function of temperature
in a log-log plot for all samples in the range 15 kΩ < R0 <
31 kΩ. Fitting of Eq. (3) to one sample (red line) is shown
with fitting parameters displayed in the inset.

dependent diffusion coefficient D may be obtained from
the resistivity by D = 1/(Rbe2N0), where N0 is the 3d
density of states and b is the film thickness. The dimen-
sionality of the system is d = 3 if the temperature de-
pendent dephasing length[2] Lϕ(T ) =

√
Dτϕ ≪ b. Near

the critical point, we use R(T ) = R0 × (T0/T )
p where

T0 = 5K, and R0 ≈ 1/L0 = 25.81kΩ where L0 = e2/h.
Using b = 2nm and estimates for Fermi wave vector kF
and N0 from Ref. [19], we obtain Lϕ ≈ 1×(T/T0)

(5p−2)/6

nm. We will see later that experimentally p ≈ 0.4, which
makes Lϕ essentially T -independent. Three dimensional-
ity is assured since the dephasing length of a disordered
ferromagnetic system is much shorter than that of a non-
magnetic system.
In Fig. 1 we show raw data for longitudinal conductiv-

ity σxx (normalized by L0) as a function of T , for all our
samples characterized by their sheet resistance R0 in the
range 15 kΩ < R0 < 31 kΩ. Within this range (fifteen
samples), all data can be fit by an expression of the form

σ(T ;R0)/L0 = A+BT p. (3)

The typical high precision of the fits is also shown in
Fig. 1 for the sample (solid circles, red fitting line)
with fitting values A = −0.01(1), B = 0.622(9) and
p = 0.390(5). We emphasize that for all the curves
shown, Eq. (3) remains a very good fit with p around
0.4 and relative residual deviations for all data points
within the range ±0.01. We also note that Eq. (3) is not
a statement of scaling but is rather a heuristic ansatz
employed to categorize the data.
Since Eq. (3) is a very good fit for all samples, we
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FIG. 2: W as a function of T , showing the existence of a
critical separatrix (A = 0) with R0 = 22.67 kΩ, separating
the metallic (A > 0) and the insulating (A < 0) samples.

can use the three fitting parameters for each sample
set to directly calculate reduced activation energy W (T )
plots[9] for all fifteen samples as is done in Fig. 2, where
W (T ) ≡ T [d lnσ(T )/dT ] = pBT p/(A + BT p). We note
that since W ∼ p(1 − A/BT p) for A ≪ BT p, the plots
clearly show one flat (T -independent, A = 0) separatrix
that separates samples which tend to a metallic limit
(W decreasing with decreasing T , A > 0) from samples
which tend to an insulating limit (W increasing with de-
creasing T , A < 0). We identify the separatrix as the
sample fitted in Fig. 1, with A = −0.01(1). Thus this
particular sample happens to be close enough to critical-
ity (pure power law) so that we can confidently make the
identification Rc = 22.67 kΩ (which is of order unity in
units of h/e2). As a bonus, using the scaling law, we can
also immediately infer from the fitting value of the crit-
ical sample, p = 0.390(5), a critical dynamical exponent
z = 1/p ≈ 2.5. Having a sample almost exactly at the
critical point allows us to obtain both the critical disor-
der Rc and the dynamical exponent z = 1/p directly and
unambiguously without the need for interpolation.
Our determination of p = 0.390(5) and Rc = 22.67 kΩ

at criticality with unprecedented precision allows us to
analyze the data in an unbiased way by using a scaling
plot of the scaling function G defined in Eq. (2) without
using Eq. (3) at all. We take different values of the critical
exponents ν+ and ν− to see how well the data points
collapse onto single curves on both sides of the transition.
The best data collapse is found for ν− = 1.38 (ν+ =
0.77) on the metallic (insulating) side. The two panels
of Fig. 3 show how well the temperature-dependent data
for each of the samples indicated in the legends collapse
onto linear scaling curves for the two best fit values of
ν+ and ν−. For convenience, we have normalized the
axes of each panel to unity using the highest temperature
value of the conductivity of the samples R0 = 21.54 kΩ
(R0 = 23.77 kΩ) closest to criticality on the metallic
(insulating) side of the transition.
In the insets to the two panels of Fig. 3, we show the

dependence of Chi-square (χ2) on ν− (ν+) in the metallic
(insulating) regime. The χ2 calculation is performed us-
ing statistical weights proportional to the inverse of the
ordinate values, thereby increasing the sensitivity of χ2

to the data sets close to the origin and hence further away
from criticality. The minima of χ2 are clearly defined for
p = 0.390(5) at ν− = 1.38(11) (ν+ = 0.77(11)) in the
metallic (insulating) regime. Accordingly, the conductiv-
ity exponent s in 3d has been experimentally determined
to have the value s = ν− = 1.38(11).

It is remarkable that the scaling functions are very well
described by straight lines in the regime considered. Thus
the conductivity on the metallic side in the temperature
regime considered can be represented by an expression
reminiscent of Eq. (3) with, however, fixed coefficients
B, p = 1/z, σ(T ;R0)/L0 = BT 1/z + D±|ǫ|

ν± , and dis-
order independent coefficients D± determined from the
intercepts of the linear fits in Fig. 3. More generally,
σ(T ;R0) and its derivatives are continuous functions of
R0 across the transition point at any finite tempera-
ture. This means that writing the scaling law Eq. (2)

as σ(T ;R0)/L0 = T 1/z[B + G̃±(|ǫ|
−ν±T 1/z)], all deriva-

tives of G̃±(y) should vanish in the limit y → ∞ , i.e.

G̃±(y) must have an essential singularity at y → ∞. A

possible form consistent with the data would be G̃±(y) =
(D±/y) exp(−ay), where a is a constant. Given that we
conclude that all our data are in the regime ay << 1.

As pointed out in Ref. [6], reasons for the earlier exper-
iments not agreeing with one another have been traced
to difficulties in having a system allowing sufficient ac-
cess into the critical region and possessing a well defined
critical point. In contrast, the current work is done on a
system where the critical point can be clearly identified,
and the critical region is experimentally accessible. Note
that the number of data sets (14 total) around Rc to be
kept in the scaling analysis of Fig. 3 were determined by
comparing the χ2 fits for different number of data points
kept. A minimum in χ2 was obtained for data points
restricted to the range 15kΩ− 31kΩ. We can also theo-
retically estimate the width of the critical region from the
boundary frequency, ωξ =

1
τ (ξ/l)

−z ∼ 1
τ (|R0−Rc|/Rc)

z̃,
where z̃ is equal to ν−z (ν+z) on the metallic (insulat-
ing) side. At T ∼ 20K and using 1/τ ∼ 103K, this
gives |R0 − Rc|/Rc ∼ 0.4 (∼ 0.2) on the metallic (in-
sulating) side, corresponding to a critical region in the
range 15 kΩ − 28 kΩ. This is a sufficiently large exper-
imentally accessible region that allows us to obtain the
critical exponents quite reliably.

Our finding of the two distinctly different values for the
critical exponents ν− and ν+ in the metallic and insulat-
ing phase, respectively, is unexpected [20]. The quality
of the data and of the fit to the scaling function shows
that the difference of ν+ and ν− can not be explained by
uncertainties in the measurement or deviations from the
scaling form. Different critical exponents of the correla-
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FIG. 3: Collapse of the data for different values of R0 accord-
ing to the scaling relation given by Eq. (2) for ν− = 1.38 on
the metallic side (top panel) and ν+ = 0.77 on the insulating
side (bottom panel). Here T0 = 5 K is a reference tempera-
ture. The insets of each panel show the dependence of χ2 on
ν− and ν+ for the values of p = 1/z listed in the legends. The
best-fit values occur at p = 0.390(5) with well-defined minima
at ν− = 1.38(11) and ν+ = 0.77(11).

tion length on both sides of the transition may indicate
a different structure of critical modes, signaling that the
critical dynamics is different on both sides of the transi-
tion. In our scaling analysis we assumed one parameter
scaling on both sides of the transition, which then leads
to different values of the critical exponent ν. A conceiv-
able alternative interpretation is that the scaling changes
character, say on the localized side, such that σ ∼ ξ−r,
with r ∼ 0.77/1.38 ∼ 1/2, and ν− = ν+ . In other words,
one could use either the same length scale on both sides
of the transition with different exponents, or different
scales on the two sides with the same exponent. A change
in scaling may be related to charge screening properties
that are essentially different in a metal (finite screening
length) and in an insulator (infinite screening length). In
the ferromagnetic state the screening properties may be
modified as well.

To summarize, we have studied the metal-insulator
transition in thin ferromagnetic disordered films in an

effectively three-dimensional regime experimentally and
theoretically. We concentrate on the critical regime, for
which the dynamical scaling behavior at the critical point
is known to be σ(ω) ∝ ω1/z. At finite T the relevant fre-
quencies ω are given by T . A sample with pure power law
dependence σ(T ) ∝ T p allows us to determine directly
and unambiguously the critical resistance Rc = 22.67 kΩ
as well as the dynamical exponent z ≡ 1/p ≈ 2.5. A
full scaling analysis of the data from a reasonably acces-
sible regime around the critical point (±30%) allows to
determine the critical exponent of the correlation length
as ν− = 1.38(11) on the metallic side and the localiza-
tion length exponent ν+ = 0.77(11) on the insulating
side. This requires the scaling function to have an essen-
tial singularity at R0 = Rc even at finite temperature.
The two distinctly different exponents indicate a highly
unusual asymmetric quantum phase transition.
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