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We show that one-dimensional electron systems in proximity of a superconductor that support
Majorana edge states are extremely susceptible to electron-electron interactions. Strong interactions
generically destroy the induced superconducting gap that stabilizes the Majorana edge states. For
weak interactions, the renormalization of the gap is nonuniversal and allows for a regime, in which
the Majorana edge states persist. We present strategies how this regime can be reached.

Introduction. The possibility of realizing Majorana
bound states at the ends of one-dimensional (1D) con-
ductors formed by topological insulator edge states, semi-
conductor nanowires or carbon nanotubes in the prox-
imity of a superconductor [1–8], as well as by quasi-one-
dimensional superconductors [9] has led recently to much
activity. An important factor for the interest is the po-
tential application of the Majorana edge states as ele-
mentary components of a topological quantum computer
[7, 10–13]. In a nanowire the Majorana edge modes
exist because of the p-wave nature of the induced su-
perconductivity, which is the result of the projection
of the superconducting order parameter onto the band
structure of the wire, consisting of helical, i.e., spin (or
Kramers doublet) filtered left and right moving conduct-
ing modes. In such a setup, the Majorana edge states
appear as particle-hole symmetric Andreev bound states
at both ends of the wire, with a localization length ξ in-
versely proportional to the induced superconducting gap
∆, and their wave function overlap is proportional to
exp(−L/ξ) with L the wire length. The independence
and the particle-hole symmetry of the two bound states
is only guaranteed if this overlap is vanishingly small,
therefore large L and ∆ are required.

Electron-electron interactions strongly renormalize the
properties of a one-dimensional conductor [14]. In par-
ticular, it has been shown that classifications of the topo-
logical phases in interacting and non-interacting systems
differ greatly [15, 16]. Further, since the elementary exci-
tations in 1d interacting systems are generally collective
excitations of bosonic character, the fate of the fermionic
Majorana edge states is not obvious. In this paper we
quantitatively answer this question. We focus on inter-
action effects in system with helical conduction states
that are in contact with a superconductor. We show that
the induced gap ∆ is substantially reduced, and thus the
Majorana edge states gets delocalized. The physics in
this regime can usually only be described qualitatively.
Remarkably, however, within the renormalization group
analysis we show that it is possible to map the interact-
ing system by refermionization onto an effective nonin-
teracting fermion system before the strong coupling limit
is reached. Due to this, we not only can prove the ex-
istence of the Majorana edge states in the interacting

system, but also can quantitatively describe their wave
function and extension ξ. Counterintuitively, the rele-
vant gap size determining ξ is not the strong coupling
value but the value ∆ = ∆(l1) (see below) at which the
system is mapped on the effective noninteracting system.
This result gives a precise prescription by how much

ξ increases for given interaction strength and induced
gap size ∆. To reach this regime and to guarantee mini-
mal overlap of both Majorana edge states, an experiment
should aim for a large induced ∆, best screened electron-
electron interactions and, roughly, a system length L ex-
ceeding the minimal length estimate of the noninteract-
ing system by at least a factor of 10.
In the following, we first illustrate the effect of elec-

tron interactions on the Majorana bound states using
the fermion chain model of Ref. [10]. In particular, we
show that for strong interactions the gap can entirely
close and the system becomes equivalent to a gapless free
electron gas. Motivated by this insight, we turn to a con-
tinuum theory for the nanowires, allowing us to include
the interactions more effectively and to move beyond the
restriction to a half-filled chain.
Fermionic chain. The prototype model for Majorana

edge states is a one-dimensional open lattice of sites i =
1, . . . , N described by the model [10, 17]

H = −
N−1
∑

i=1

[

tc†ici+1 +∆c†i c
†
i+1 + h.c.

]

− µ

N
∑

i=1

ni, (1)

where ci are tight-binding operators of spinless fermions,
for example the electron operators of the helical conduc-
tion bands, t > 0 is the hopping integral, ∆ > 0 the
triplet superconducting gap, µ the chemical potential,
and ni = c†ici. In terms of the Majorana fermion ba-

sis [18] γ1
i = ci + c†i and γ2

i = i(ci − c†i ), the model is

rewritten as H = −i
∑N−1

i=1

[

w+γ
2
i γ

1
i+1 − w−γ

1
i γ

2
i+1

]

−
iµ2

∑N
i=1 γ

2
i γ

1
i , with w± = (t ± ∆)/2. At t = ∆ and

µ = 0, the only nonzero interaction is w+, and the ground
state corresponds to pairing of Majorana fermions be-
tween neighboring sites γ2

i γ
1
i+1, with an excitation gap of

2w+. In the open chain, γ1
1 and γ2

N no longer appear in
H and remain unpaired. They form the two Majorana
bound states that are localized on a single lattice site at
each edge of the wire and can be occupied at no energy
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cost. For µ 6= 0 or ∆ 6= t, the two edge Majorana modes
are coupled to the bulk system and their spatial extension
becomes larger, on the order of ξ ∼ a/ ln |w+/w|, with
w = max{|µ|, |w−|} and a the lattice constant [10]. In
the finite system, the overlap of the two Majorana states
at both ends of the chain is proportional to e−Na/ξ, and
the two states are independent only for Na ≫ ξ.

In such a system, interactions between the fermions
critically affect the existence and stability of the Ma-
jorana edge states. Indeed, they lead not only to a
further coupling of the Majorana edge states to the
bulk system, but also can substantially reduce the
bulk gap size. As an illustration, we include into the
model the repulsive nearest neighbor interaction H ′ =
U
∑N−1

i=1 (ni − 1/2) (ni+1 − 1/2), with U > 0. It is now
straightforward to show that interactions can entirely
close the superconducting gap. For strongly interact-
ing t = ∆ = U/4 we can map H by a Jordan-Wigner

transformation to the spin chain H = t
∑N−1

i=1 (σx
i σ

x
i+1 +

σz
i σ

z
i+1), where σx,y,z

i are spin 1/2 operators (normal-
ized to ±1) defined by ci = 1

2 (σ
x
i + iσy

i )
∏

j<i σ
z
j . By

a further Jordan-Wigner transformation to new fermion
operators c̃i = 1

2 (σ
z
i + iσx

i )
∏

j<i σ
y
j we then see that

H = −2t
∑N−1

i=1 (c̃†i c̃i+1 + c̃†i+1c̃i), which describes a free
gapless fermion gas in which the localized states have
disappeared. Although we have selected special interac-
tions strengths, it is well known that in one dimension
the renormalization due to weaker interactions can drive
the system into such a gapless phase. To quantitatively
include this renormalization and to allow a treatment be-
yond the half-filled (µ = 0) case, we use in the following
a continuum description, first at half filling, then away
from half filling.

Continuum model. For the continuum theory, we focus
on a quantum wire with Rashba spin-orbit interaction in
a magnetic field with proximity induced singlet supercon-
ductivity [3–6]. Since the interacting system eventually
allows a mapping onto an effective Fermi liquid, we first
discuss the noninteracting case by reducing the previ-
ously considered models [3–6] to a minimal model that
captures the same physics in a transparent way. The non-
interacting part of the Hamiltonian for the quantum wire

can be written as a sum of two parts, H0 = H
(1)
0 +H

(2)
0 ,

where H
(1)
0 is given by (throughout the paper ~ = 1)

H
(1)
0 =

∫

drΨ†
α

[(

p2

2m
− µ

)

δαβ+αRp σ
x
αβ−∆Zσ

z
αβ

]

Ψβ,

(2)
where Ψα is the electron operator for spin α, the summa-
tion over repeated spin indices, α, β, is assumed, r is the
coordinate along the wire, p = −i∂r, αR is the spin-orbit
velocity, and ∆Z is the Zeeman energy of the magnetic
field applied along the spin z direction perpendicular to
the spin-orbit selected spin x direction. The second part,

H
(2)
0 , includes the induced singlet superconducting term

with order parameter ∆S and is expressed as, H
(2)
0 =

i
∫

dr∆SΨ
†
ασ

y
αβΨ

†
β/2 + h.c. Without interactions, H

(1)
0

has the eigenvalues ǫ± = p2/2m ±
√

(αRp)2 + (∆Z/2)2

and corresponding eigenmodes Ψ±(p). Expanding the
singlet superconducting term in this eigenbasis leads to
superconducting order parameters of the triplet (within
Ψ− and Ψ+ subbands) as well as of the singlet type (mix-
ing Ψ− and Ψ+ subbands). The Majorana edge states
require triplet pairing [2–7, 19, 20], which is achieved by
tuning the chemical potential to lie within the magnetic
field gap such that only the Ψ− subband is occupied. In
Ref. [6], Majorana edge modes were derived using the

full Hamiltonian H
(1)
0 +H

(2)
0 and were shown to exist in

the limit ∆Z >
√

∆2
S + µ2. The same physics is also ob-

tained by restricting to the occupied Ψ− subband, which
will be assumed in the following. For ∆Z ≫ ∆S , αRkF ,
with kF ≈

√
m∆Z , the pairing then takes the compact

form [2–7, 19, 20]

H
(2)
0 ≈ (∆/kF )

∫

drΨ†
−(r)pΨ

†
−(r) + h.c., (3)

with the effective triplet superconducting gap ∆ =
∆S(αRkF /∆Z).
In the following we work in the diagonal basis [21] with

the fermions confined in the r > 0 region. The open
boundary condition forces the fermion fields to vanish at
both ends of the wire, Ψ−(r = 0) = Ψ−(r = L) = 0.
In terms of the slowly varying right, R(r), and left,
L(r), moving fields, the field Ψ−(r) acquires the form,
Ψ−(r) =

∑

k sin(kr)c−(k) = eikF rR(r) + e−ikF rL(r),
where c−(k) is the annihilation operator in the Ψ− sub-
band. We note that R(r) = −L(−r). The noninteract-
ing case can therefore be written in terms of R(r) only

as H0 =
∫ L

−L
dr R

†(r)HR(r), with

H =

(

−i vF2 ∂r −∆sgn(r)
−∆sgn(r) i vF2 ∂r

)

(4)

and R(r) = [R(r),R†(−r)]T . Using R(r) =
(ei3π/4/

√
2)

∑

ǫ[uǫ(r), vǫ(r)]
T γǫ, where the normalized

functions uǫ(r) and vǫ(r) satisfy the eigenvalue equa-
tion H[uǫ(r), vǫ(r)]

T = ǫ[uǫ(r), vǫ(r)]
T , we obtain H0 =

∑

ǫ ǫγ
†
ǫγǫ. For ǫ = 0 there exists a localized mode at each

edge. At r = 0 it is of the form uǫ=0(r) ∝ e−2∆|r|/vF ,
with v0(r) = iu0(r). The operator corresponding to the

edge mode, γ0 =
∫ L

−L dru0(r)R(r), satisfies the Majo-

rana condition γ0 = γ†
0. Thus the Majorana edge mode

obtained by combining the right and left modes is given
by,

ΨM
ǫ=0(r) = Cγ0 sin(kF r)e

−r/ξ, (5)

for L ≫ ξ, where C is the normalization constant and
ξ = vF /2∆ the localization length. Note that in 1D the
decay is purely exponential.
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Interaction effects. Next we include interactions be-
tween the fermions, given by

∫

drdr′V (r − r′)ρ(r)ρ(r′)
with V (r) the repulsive potential and ρ(r) the fermion
density. To quantitatively include the interactions we
bosonize the Hamiltonian, taking into consideration that
the low-energy physics is described by a single species of
fermions in the Ψ− subband. Using the standard proce-
dure [14], the bosonic Hamiltonian reads,

H =

∫

dr

2

[

vK(∂rθ)
2 +

v

K
(∂rφ)

2 +
4∆

πa
sin(2

√
πθ)

− U

π2a
cos(4

√
πφ− 4kF r)

]

, (6)

where a is the lattice constant, the ∂rφ field describes the
density fluctuations and θ is the conjugated field. The
quadratic part in Eq. (6) includes the repulsive interac-
tion V (r) between the fermions (K < 1) and the velocity
v modified by interactions. The sine term in Eq. (6) is

due to the triplet superconducting term H
(2)
0 given in

Eq. (3), and the cosine term describes umklapp scatter-
ing by V (r).
The umklapp terms play a role only in lattice sys-

tems but are absent in quasi-one-dimensional quantum
wires fabricated on a two-dimensional electron gas. For
fermions on a lattice near half-filling, 4(kF −π/2a)L ≪ 1
and the oscillatory part inside the cosine term can be
neglected. The interactions then lead to the renormal-
ization of the coupling constants ∆, U , and K, which
by standard renormalization group (RG) theory [14] is
expressed by the RG equations

d lnK

dl
=

δ2

2K
− 2Ky2, (7)

dδ

dl
= (2 − 1

K
)δ,

dy

dl
= (2− 4K)y, (8)

where l = ln[a/a0] is the flow parameter with a0 the
initial value of the lattice constant. δ(l) and y(l) are
dimensionless quantities at length scale a, defined as
δ(l) = 4a∆(l)/vF and y(l) = U(l)a/πvF . The initial
values of the rescaled parameters are given by K0, ∆0,
δ0, U0, and y0. For K < 1/2 the umklapp term is rele-
vant and superconductivity irrelevant, leading to a Mott
phase, whereas for K > 1/2 the opposite is true and the
system is superconducting. NearK = 1/2 the low-energy
physics depends critically on the relative strength of δ0
and y0. A large δ0 compared to y0 favors superconduc-
tivity over the Mott phase and vice-versa. An interesting
scenario corresponds to the line of fixed points δ0 = y0
and K0 = 1/2, where the parameters remain invariant
under the RG flow. Following Refs. [14, 22], we find that
under a change of quantization axis the theory is de-
scribed by a quadratic Hamiltonian. Therefore, similar
to the discrete model with t = ∆ = U/4, the spectrum is
gapless. The Majorana edge states are thus absent on the
line of fixed points, as well as in the Mott phase. On the
other hand, in the superconducting phase, K(l) grows as

well and eventually crosses K(l1) = 1 at the scale a(l1).
As we show below, this allows to refermionize the system
and to prove the existence of the Majorana edge states.
Away from half-filling, the umklapp term in Eq. (6) be-

comes strongly oscillating and can be neglected, allowing
us to set y = 0 in Eq. (8). The remaining RG equa-
tions reduce to the standard Kosterlitz-Thouless (KT)
equations under the change of variables K → 1/2K̄ and
δ → δ̄/

√
2 [14]. The flow equation of ∆(l) differs from

δ(l) due to the difference in the factor of a(l) and is given
by, d∆/dl = (1 −K−1)∆. Its solution in terms of K(l)
acquires the form,

∆(l) = ∆0

√

8[K(l)−K0]− 4 ln[K(l)/K0] + δ20
δ0 exp[l]

. (9)

The equation for the separatrix is obtained by choosing
δ0 = 0 and K0 = 1/2 in Eq. (9). For small deviations of
K from an arbitrary initial value K0, l is given by,

l ≈ K0√
α
cot−1

[

α+ k0(k0 + x)

x
√
α

]

, (10)

where x = (K−K0)/K0, k0 = 2K0−1, and α = δ20/2−k20.
Rather than linearizing the KT flow eqs. around the
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FIG. 1. (Color online) RG flow of ∆/∆0 as a function of K
for ∆0 = 0.05vF /a0 and the three initial values K0 = 0.5,
K0 = 0.6, and K0 = 0.8. The solid lines are obtained from
the numerical integration of the KT eqs. The dashed lines
are obtained from Eqs. (9) and (10) [the dashed line with
the steepest decay for K0 = 0.5 marks an exponential drop,
obtained from Eq. (9) with l ≈ (2K0/δ

2

0)x]. The flow reaches
the non-interacting limit at K = 1 (shown by the red dotted
line). The vertical arrows indicate the position where δ = 1
is reached.

fixed point as is often done [14], the solutions given by
Eqs. (9) and (10) are obtained by integrating the KT
equations. Figure 1 shows ∆/∆0 as a function of K
for ∆0 = 0.05vF/a0 and three different values of K0,
K0 = 0.5, 0.6 and 0.8. For all the K0’s considered, ∆
reduces from its initial value and acquires its minimum
at K = 1. Note that near K = 1, ∆ shows very little
variation. For the strongly repulsive case, K0 = 0.5, ∆ is
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reduced by an order of magnitude as K reaches K <∼ 1.
In particular, for K ≈ 0.5 and x ≪ 1, Eq. (10) can be
approximated as l ≈ (2K0/δ

2
0)x and thus ∆ has an ex-

ponential drop. More generally, the exponential decay
persists as long as x ≪ δ20/(2max{k0,

√

|α|}) is satisfied.
At x ∼ δ20/(2max{k0,

√

|α|}), one has to consider the
full form for l as given by Eq. (10).
Refermionization. We stress that the mere reduction

of ∆ does not tell much about the Majorana edge states
yet. Indeed, their existence and the shape of their wave
function has been derived in a noninteracting system
only, and their fate under interactions remains still to
be shown. To achieve this, we first note that although
everywhere in the repulsive regime (K < 1) K has a
monotonic increase and ∆ a monotonic decrease, the flow
can be divided into two regions based on the initial values
of δ0 and K0. In the first region, characterized by initial
values (K0, δ0) with K0 > 1/2 (screened regime) or with
K0 < 1/2 together with δ0 > 2

√

2K0 − ln(2K0e) (i.e.,
above the separatrix), the flow is toward the strong cou-
pling regime δ,K → ∞. Under the RG, ∆ decreases to
a minimum at the length scale a(l1) at which K(l1) = 1,
and continues to increase afterwards. We note that
K = 1 marks a special line where all interactions have
scaled to zero, and our bosonic theory can be mapped
via the refermionization procedure into an effective non-
interacting fermionic system with a superconducting gap
∆(l1). Thus, instead of continuing the RG flow to the
strong coupling limit we stop the flow at K(l1) = 1 and
solve the problem exactly using the renormalized super-
conducting gap ∆(l1). This is justified since the long
wave-length physics remains invariant along the flow tra-
jectory. While it would be difficult to extract information
about the true electrons from the refermionization map-
ping, it allows us to prove the existence of the Majorana
edge states. The edge wave functions calculated in this
way is described very well by Eq. (5) with ξ = v/2∆,
and ∆ given by ∆(l1). For initial K0 and ∆0 the value of
∆(l1) is quantitatively calculated using Eqs. (9) and (10).
The same refermionization mapping applies at half-filling
for K0 > 1/2, where ∆(l1) is determined by Eqs. (7)
and (8). Our conclusions on the shape of Majorana edge
states have indeed been confirmed by a numerical ap-
proach [28].
To preserve the Majorana property of the edge states

and so their usefulness for quantum computational appli-
cation [2, 10], the two Majorana states at each end of the
system must have minimal overlap, i.e., 2∆(l1)L/v ≫
1. This can be achieved by increasing the wire length
L by at least the factor ∆0/∆(l1) as compared with
the naive noninteracting picture. This result is valid
if the RG flow crosses K = 1, which occurs if the
length scale a(l1) is shorter than any cut-off length, i.e.,
a(l1) < min{L,LT , a(lδ)} [where lδ is defined as δ(lδ) = 1
and LT = v/kBT is the thermal length]. If, however,
a(l∗) = min{L,LT , a(lδ)} < a(l1), the RG is cut-off be-

fore K = 1 is reached. Since from Fig. 1 we see that in
most cases still ∆(l∗) ≈ ∆(l1), we expect that the Ma-
jorana edge states persist and can be approximated by
Eq. (5) with ∆ = ∆(l∗). This conclusion is also sup-
ported by numerics [28].

The second region is the unscreened regime with K0 <
1/2 and δ0 < 2

√

2K0 − ln(2K0e). Here the flow is to-
wards the line of Luttinger-liquid fixed points, ∆ = 0
and K0 < K < 1/2. In a realistic scenario the flow is
stopped before the fixed points are reached at a length
scale given by, a(l∗) = min{L,LT}. If a(l∗) = LT ,
then ∆(l∗) < kBT and thermal fluctuations overcome
superconductivity. On the other hand, if a(l∗) = L,
then the superconducting term is renormalized down to
∆(l∗) ≈ ∆0(L/a0)

1−1/K0 . In either case the bulk spec-
trum remain gapless and all correlations exhibit power-
law decay. Thus, the Majorana edge states which require
the presence of gapped bulk modes are absent.

One way to ensure a gapped phase in the bulk is to con-
sider a larger value for δ0. A large δ0 may be difficult to
achieve as the proximity induced gap ∆S is further sup-
pressed by the small ratio, αRkF /∆Z . Moreover, in con-
trast to K0, controlling and scaling up the strength of the
superconducting order parameter is non-trivial. A sim-
pler alternative would be to apply gates on top of the wire
to screen the interactions and to increase K0 to a larger
K ′

0 that pushes the initial point (K ′
0, δ0) above the sep-

aratrix, δ0 > 2
√

2K ′
0 − ln(2K ′

0e) or beyond K ′
0 > 1/2,

so that the flow is towards the strong coupling regime.
After the first preprint of this paper appeared on the
arXiv server, other groups arrived at similar conclusions
[28–30].

Potential candidate systems for the observation of Ma-
jorana edge states are the helical conductors formed at
the boundaries of topological insulators [23, 24], InAs
nanowires with strong spin-orbit interaction [2, 6, 25, 26],
quasi-1D unconventional superconductors [9], carbon
nanotubes [8], and quantum wires with nuclear spin or-
dering [27]. The latter two systems may be particularly
interesting because they are readily available and support
helical modes without external magnetic fields.
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