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Hüseyin Kurtuldu,1 Konstantin Mischaikow,2 and Michael F. Schatz1
1Center for Nonlinear Science and School of Physics,

Georgia Institute of Technology, Atlanta, Georgia 30332, USA and
2Department of Mathematics, Rutgers University, New Jersey 08854, USA

(Dated: May 9, 2011)

Spatio-temporally chaotic dynamics in laboratory experiments on convection are characterized
using a new dimension, DCH, determined from computational homology. Over a large range of
system sizes, DCH scales in the same manner as DKLD, a dimension determined from experimental
data using Karhuenen-Loéve decomposition. Moreover, finite-size effects (the presence of boundaries
in the experiment) lead to deviations from scaling that are similar for both DCH and DKLD. In the
absence of symmetry, DCH can be determined more rapidly than DKLD.

PACS numbers:

Characterizing data from experiments on spatially ex-
tended non-equilibrium systems is a challenge [1]. Meth-
ods devised to extract information from low-dimensional
systems [2] fail as the number of dynamical degrees of
freedom (DOF) increases. Recently, methods have been
developed to determine the number of DOF in numer-
ical simulations [3–8]; these methods suggest that the
already large number of DOF grow still larger as the sys-
tem size increases, i.e, the number of DOF in spatially ex-
tended systems is an extensive quantity. The techniques
for measuring the number of DOF in simulations require
very precise control of the initial conditions and, there-
fore, cannot be used in most experimental systems. What
are needed are good, experimentally accessible method-
ologies to characterize the number of DOF efficiently in
large experiment data sets not only to measure how DOF
scale with system size, but also to detect the impact of
finite size effects (always present in experiments) on the
behavior of the number of DOF.

In this letter, we show, for the first time, that the im-
pact of finite size effects on the dynamics of a spatio-
temporally chaotic system can be characterized quanti-
tatively. This characterization was performed in two very
different methods: (1) By using the well-established pat-
tern characterization tool, Karhunen-Loève decomposi-
tion(KLD) [9] to compute the KLD dimensionDKLD [10],
and (2) by applying the tools of algebraic topology (com-
putational homology) [11] to compute a novel topologi-
cal dimension DCH (defined below). Both measures of
dynamical dimension not only show the system is exten-
sively chaotic but also exhibit the same quantitative devi-
ation from scaling due to the presence of system bound-
aries. This suggests our approach to describing finite-size
effects should be independent of the particular method
used to characterized the dimensionality of the dynamics.

Computational homology (CH) based on algebraic
topology is a metric-independent characterization tech-
nique that aims to measure the complexity of the geome-
try of the structures in high-dimension systems [11]. Ho-

mology computations, in an N dimensional topological
space X , produce a set of N non-negative integers βk(X)
(k = 0, 1, . . . , N − 1) known as Betti numbers. Each
βk(X) characterizes a unique topological property of X
and a set of Betti numbers provides a reduced description
for X . Two distinct, two-dimensional topological spaces
can be obtained from each shadowgraph image (Fig. 1)
of spatio-temporally chaotic convective flow; specifically,
image pixels whose intensity are lower (higher) than the
median intensity for a given image belong to the cold
(hot) topological space Xc (Xh). Homology computa-
tions yield two characteristic Betti numbers for each
space: β0c (β0h) which counts the number of distinct
connected cold (hot) components and β1c (β1h) which
counts the number of cold (hot) holes formed within Xc

(Xh). Alternatively, β1c (β1h) counts the number of hot
(cold) connected regions completely surrounded by cold
(hot) flow. We use the quartet {β0c, β1c, β0h, β1h} to de-
fine the CH state of the convection pattern at the instant
of time when the pattern’s image is recorded. The time
evolution of CH states is characterized by successive com-
putations of Betti numbers from a time series of images;
the number of distinct CH states are counted, thereby,
yielding an estimate of pk, the probability of occurrence
for a given state. We introduce a positive integer DCH

as a function of f :

DCH = min

{

k :

k+1
∑

k=1

pk > f

}

(1)

which defines the minimum number of CH states k
needed to capture some fraction f ≤ 1 of the total proba-
bility. Here, we use DCH to measure the spatio-temporal
disorder of an extensively chaotic experimental system.
KLD analysis is widely used to extract important dy-

namical modes from data sets. To analyze shadowgraph
data using KLD, an ensemble of space-time data u(x, t)
is first formed from the intensity arrays u(xi, tj), which
represent the pixel value recorded at position xi at time
tj . The eigenvectors as KLD modes with associated
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eigenvalue λ are generally obtained from an eigendecom-
position of the tensor< u(x, t)⊗u(x′, t) >, which is built
by the two-point correlation of the elements of u(x, t) av-
eraged over time [9]. Conventional KLD algorithms are
computationally intensive on large data sets and gener-
ally done using a singular value decomposition and hence
is of order n3 where n is the number of pixels in both
space and time. In order to overcome this problem we
implement a modified KLD algorithm proposed by Dug-
gleby and Paul [12] for numerical data that exploits the
azimuthal symmetry for a rotationally invariant experi-
mental system. This results in a small eigenvalue prob-
lem; for each wavenumber n one must analyze the tensor
< ûn(r, t) ⊗ û

∗

n(r
′, t) >, where ûn(r, t) is the Fourier

transform of u(x, t) in the azimuthal direction and ∗ de-
notes the complex conjugate. In computations the eigen-
values are arranged in descending order and normalized
by the sum of all the eigenvalues. The KLD dimension
DKLD [10]

DKLD = min

{

m :
m+1
∑

m=1

λm > f

}

(2)

defines the minimum number of KLD modes m required
to capture some fraction f ≤ 1 of the total eigenvalue
spectrum. A numerical study by Zoldi and Greenside [10]
on a homogeneous extended chaotic system showed that
the Lyapunov dimension Dλ (the number of dynamical
DOF captured by the Lyapunov exponents [2]) andDKLD

demonstrate analogous extensivities. Dλ andDKLD scale
linearly at similar rates with either size (area) of the en-
tire system or size of a sufficiently large subsystem in a
fixed system size.
Rayleigh Bénard convection (RBC) of a horizontal

fluid layer heated from below is considered a paradigm to
investigate the nature of pattern formation, and has mo-
tivated numerous numerical and laboratory studies [13].
We study RBC experimentally in a cylindrical convection
cell of aspect ratio Γ ≡ r0/d (radius to depth ratio) in
which a compressed gas is confined. A similar set up is
described in detail by de Bruyn et al. [14]. Patterns of
convective flows are acquired by controlling the reduced
Rayleigh number ǫ = (∆T −∆Tc)/∆Tc above the onset
of convection that occurs at a critical temperature differ-
ence ∆Tc between top and bottom of the cell. We analyze
the convection in the state known as spiral defect chaos
(SDC) [15]. In order to study extensivity in SDC, four
large sets of spatio-temporally chaotic data are acquired
in different experiments as described in Table I. D-I and
D-III are taken in two different Γ cells where gaseous
CO2 is bounded by a lateral wall made of filter paper.
D-II is obtained in the same cell with gaseous SF6 while
D-IV is acquired in an experiment performed with SF6

and a plastic (polyethersulfone) sidewall [19]. The ther-
mal conductivities of the paper and of the plastic walls
are, respectively, about a factor of 4 and 10 times larger

DATA Γ Fluid Sidewall Pr t/th N/103

D-I 35 CO2 Paper 0.98 451 100
D-II 35 SF6 Paper 0.87 20 3
D-III 30 CO2 Paper 0.98 50 15
D-IV 30 SF6 Plastic 0.95 130 105

TABLE I: SDC data taken in four different experimental cells
at ǫ = 0.8 with the aspect ratio Γ, the fluid and the sidewall
used. Pr is the Prandtl number and t is the observation
time in units of the horizontal diffusion time th = Γ2tv. The
vertical diffusion time tv is order of seconds. N is the number
of images captured for computations.

(a) (b)

(c) (d)

FIG. 1: Shadowgraph patterns of SDC at ǫ = 0.8 (a) from
D-I (b) from D-II, (c) from D-III and (d) from D-IV. Bright
and dark regions represent hot and cold flows respectively.
The median value of intensity in an image is used as a thresh-
old value to form two distinct binary images that represent
topological spaces for hot Xh and cold flows Xc, respectively.
Homology analysis yields the following topological states for
the entire patterns, {β0c, β1c, β0h, β1h}: (a) {64, 2, 29, 13},
(b) {61, 4, 35, 6}, (c) {42, 3, 28, 8} and (d) {43, 4, 44, 4} see
Ref. [16] for more details.

than the thermal conductivity of the fluid used. Sample
patterns are shown in Fig. 1.

CH and KLD provide very different methods for an-
alyzing convection patterns; nevertheless, we find DKLD

and DCH increase in a similar manner as new degrees
of freedom are added. We explore extensivities of DKLD

and DCH for different subsystems sizes in D-I, which are
obtained by sampling the data spatially with a circular
window of increasing radii r, measured in units of depth
d from the cell center. We work with a fixed fraction
f = 0.7 [17] to compute DKLD and DCH from the eigen-
value spectra and the probability distributions, respec-
tively, for each subsystem. We find that, over a large
range of subsystem sizes, DKLD scales extensively with
the area of the system A ∝ r2 (Fig. 2), consistent with
the results of KLD analyses in previous numerical and
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FIG. 2: Extensive scalings of DCH and DKLD for increasing subsystem sizes are obtained by computational homology (a) and
a modified KLD algorithm based on a Fourier method (b), respectively for fraction f = 0.7 in D-I. The number of images, at
given observation times, used at each data point in computations is labeled. The linear lines are drawn to guide the extensitivies
to eye. Choosing f very close to 1 may include experimental errors, whereas choosing it too small may exclude necessary modes
and states necessary to describe the dynamics. But, for the range 0.5 ≤ f ≤ 0.9, extensive scalings of dimensions normalized
by the maximum dimension at each f nearly fall on a single curve.
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FIG. 3: The rates of increase ρ estimated from extensive scal-
ings of DCH (open symbols) and DKLD (closed symbols) are
shown as a function of r/Γ in units of cell depth d to indicate
the sidewall effects in the experiments, D-I (squares), D-II
(triangles), D-III (circles), D-IV (diamonds), at ǫ = 0.8. ρ is
only calculated from DKLD in D-II. While D-I, D-II, and D-III
are performed with a paper sidewall, D-IV is conducted with
a plastic boundary. The number of images used for computa-
tions in D-I, D-II, D-III and D-IV is given in Table I. Also, ρ
as dimension per area is obtained from the conventional KLD
algorithm (asterisks) by sampling the data of 10, 000 images
in D-I with an annular window of inner r and outer r + 2d
radius (r ≥ 7d).

experimental studies that strongly suggest that the state
of SDC is extensively chaotic [10, 17]. We find that DCH

also provides strong evidence for extensive chaos; DCH

also scales extensively with r2 over substantially the same
broad range of subsystem sizes as DKLD (Fig. 2).

Computational homology offers a way to measure di-
mensions that converges more rapidly than dimensions
measured using KLD. Conventional KLD become pro-
hibitively expensive to compute even for moderately large

system sizes; as a result, measurements of DKLD can fail
to converge [17]. Fourier-based KLD (used in our analy-
sis) provides faster and converged estimates of DKLD in
large subsystem sizes [12]; it is, however, only suitable for
systems with rotational or translational invariance. CH
has no such limitations and can be performed on suffi-
ciently large systems with a boundary of any shape. It
is far easier to compute DCH than DKLD since the CH
analysis is carried out separately for each snapshot.

We demonstrate the convergence for both KLD and
CH analyses of our data by using different sampling
methods. In one approach, we change the sampling rate,
thereby changing both total observation time and the
number of images in the analysis. We find both DKLD

and DCH converge provided that sufficiently large data
sets are used in computations (Fig. 2). We also compute
extensive scaling of DCH by using samples randomly cho-
sen from the data; DCH exhibits exactly the same scaling
with the subsystem sizes in data sets of 25, 000 images
selected either randomly or a fixed sampling period of
451th.

As the analyzed subsystem size approaches the physi-
cal size of the experiment, both DCH and DKLD deviate
from scaling in the same way (Fig. 3). To compare this
deviation in both dimensions quantitatively, we use an
intensive quantity ρ = ∂D/∂A measured as a function of
the radial distance from the cell center. For each dimen-
sion, the values of ρ are normalized to remove paramet-
ric dependence on the choice of f ; moreover, the radial
distance r is normalized by the aspect ratio Γ. In this
representation (Fig. 3), ρ = 1 (for small r/Γ) indicates
both DCH and DKLD scale linearly with the area; how-
ever, ρ becomes significantly less than one for both DCH

and DKLD for r/Γ sufficiently large. Remarkably, the
deviation of ρ from unity exhibits a similar functional
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dependence on r/Γ for both DCH and DKLD even if dif-
ferent boundary conditions are imposed.
Our results suggest the deviation from scaling for DCH

and DKLD measures the impact of lateral boundaries
(sidewalls) on the chaotic flow (Fig. 3). Sidewalls affect
convection patterns due to the mismatch in the thermal
conductivities of the sidewall and the fluid; sidewall ef-
fects have previously been probed primarily at small ǫ
near convection onset [14, 18]. Here, we examine the ef-
fect of sidewalls far from onset by comparing the behavior
of ρ for experiments with different sidewall conditions at
ǫ = 0.8. We see that ρ for both DCH and DKLD exhibits
the same deviation from scaling for experiments in differ-
ent sized convection cells, as long as the lateral boundary
conditions are similar (experiments D-I, D-II and D-III
in Fig. 3). However, in experiments where the (plastic)
lateral boundaries increase sidewall forcing of the con-
vective flow (D-IV in Fig. 3) ρ for both DCH and DKLD

deviates from scaling at smaller r/Γ than for experiments
with (paper) lateral boundaries where sidewall forcing is
weaker (D-III in Fig. 3). More specifically, for both DCH

and DKLD, ρ decreases by about 30% (from unity) at
r/Γ = 0.86d in D-I, D-II and D-III and at r/Γ = 0.74d
in D-IV. Moreover, our measurements are robust in the
respect that nonlinearities associated with shadowgraph
imaging do not alter our results; measurements of DCH

and DKLD, computed for the full circular system and a
circular region (r = 15d) from long time series of shadow-
graph images, fluctuate only 3% and 10%, respectively,
as the effective optical distance is varied over an order of
magnitude in experiments [16].
Relating experimentally accessible measures of the

number of DOF (e.g., DCH and DKLD) to more direct
measures (e.g., Dλ) remains an open question. Recent
direct simulations of RBC by Duggleby and Paul [12]
yielded the relationship DKLD ≈ 19.7Dλ from the vari-
ation of both dimensions with a range of system sizes
6 ≤ Γ ≤ 15 in a cylindrical convection cell. Our results
suggest that examining the effect of finite system size
on Dλ may provide a way to link Dλ quantitatively to
DCH and DKLD. In particular, it would be interesting to
know whether ρ behaves in a universal fashion; i.e., to
explore whether ρ associated with Dλ exhibits a similar
functional dependence as that shown by DCH and DKLD

in Fig. 3). In this regard, future studies that couple RBC
laboratory experiments with numerical simulations with
realistic boundary conditions at the same parameter val-
ues would be of greatest value.
This work is supported by the Department of Energy
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