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Experimental studies of synchronization properties onvagts with controlled connection topology can
provide powerful insights into the physics of complex netivgo Here, we report experimental results on the
influence of connection topology on synchronization in fibptic networks of chaotic optoelectronic oscilla-
tors. We find that the recently predicted non-monotonicpdile synchronization landscape manifests itself
in the rate of convergence to the synchronous state. We bksgree that networks with the same number of
nodes, same number of links, and identical eigenvalueseotdlupling matrix can exhibit fundamentally dif-
ferent approaches to synchronization. This previouslyotined difference is determined by the degeneracy of
associated eigenvectors in the presence of noise and noisesatncountered in real-world conditions.

PACS numbers: 05.45.Xt, 89.75.-k, 87.18.Sn

Recent research [1] has shown that network structure playgptoelectronic feedback loops. The feedback loops are simi
a significant role in cascading failures [2], epidemics §8jd  lar in construction to those used by Argyeisal. for chaotic
recovery of lost network function [4]. Synchronizationoic =~ communication [9]. Each feedback loop (Fig. 1) comprises
pled dynamical units is a widespread phenomenon that hassemiconductor laser which provides a steady optical power
served as an exampbar excellence of this line of theoretical a Mach-Zehnder electro-optic intensity modulator, two pho
research [5]. For example, by modeling network synchrenizatoreceivers, a digital signal processing (DSP) board which
tion in terms of diffusively-coupled identical oscillagit has  provides electronic filtering and time delay, and an amplifie
been shown that the stability of fully synchronous statesiis  The optical output of each electro-optic modulator is prepo
tirely determined by the eigenvalue spectrum of the cogplin tional to cos?(z; + ¢o), wherex; is the normalized electri-
matrix [6, 7]. A fundamental yet largely unexplored questio cal input voltage that characterizes each oscillator, gnis
concerns the robustness of such network-based predictions the operating point of the modulator. The signajét) are

New insight into this question has been provided by a recerfecorded using a four-channel, 8-bit digital oscilloscopee
study on networks that optimize the synchronization rangénodulator output is split to act as the feedback signal and as
[8]. It is predicted that synchronization properties, sash the coupling signal to the other nodes, with each couplinig li
the coupling cost at the synchronization threshold andeanggither enabled or disabled using optical attenuators. tiepu
of coupling strength for stability, will exhibit a highly me  periments, all the couplings are set to have the same skrengt
monotonic, cusp-like dependence on the number of nodes arkf €ach node, the feedback and the coupling signals are pro-
links of the network [8], contrary to the prevailing paraaig ~cessed using the DSP board. The parameters of each loop are
The existence of such cusps indicate that small pertunmatio Set such that the oscillators exhibit high-dimensionalbsha
of the network structure, which might be experimentally un-The DSP board implements a 2-pole digital bandpass filter
avoidable, may lead to large changes in the network dynamic&nd a time delay on both the feedback and coupling signals.

In this work, we experimentally demonstrate that the rate® diffusive-coupling scheme is implemented through the DSP

of convergence to synchronous states, a broadly significant
synchronization property, follows the theoretically poted
non-monotonic trend. More important, we observe that net- _ coupling
works with identical eigenvalue spectra (generally assuime {;’“Sgr Mach-Zehnder Optical  Wwith node 3
to behave in similar fashion) can exhibit qualitativelyfelif oce  modulator = attemeggor

ent convergence properties. We classify these networks int
two groups, which we termonsensitive networks and sensi- x 3 coupling
tive networks, respectively. This classification is based on the with node 3
properties of thesigenvectors of the coupling matrix and the
observation that networks with different eigenvector adege
eracies will respond differently to perturbations typiohex-
perimental conditions. In contrast to sensitive netwonks)-
sensitive networks are predicted and experimentally eeser
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: X : ) in li
to be robust against these perturbations. We identify ohser DSP board wci:)hugolgf 4

tional noise and mismatch of coupling strengths as the main
experimental factors underlying these differentrespsnse  FiG, 1. Schematic of a single optoelectronic node. Each rede

Our experimental setup consists of a networkNof= 4  coupled to the rest of the network (not shown) through filgieo
links. The couplings are enabled/disabled using optidahagtors.



board. The equations that describe each node in the expeme consider stable synchronous states, which correspond to
mental network are derived in Ref. [10], and are given by:  configurations for which the synchronization error, defined

du;(1) 2
@ - Awl) = Bcoslai{t =) + dol, @) 0(t) = m Sl —ay0l, @
xi(t) = (ul — 3 Zémuj ) (2) v

ideally approaches zero. For real networks that synchegniz
_ _ this error converges to a synchronization fldigr,determined
whereA = [ (wle— w2) 8}2 } , B= [%2 } , C=[10]. by experimental mismatches and noise. Figure 2(c) shows
the experimentally measured rate of convergence to synchro
Here,u;(t) is a2 x 1 vector describing state of the filter at nijzation for the sequence of optimal and suboptimal nete/ork
nodei, andz;(t) is the observed variable. The oscillators areshown in Fig. 2(a). This rate of convergence is defined as
diffusively coupled through the network specified by the-cou the exponent of the exponential decay to the synchroniza-
pling matrixL = (£;;); the diagonal elemertt; > Oisthe net  tion floor, (§ — 6,) ~ exp(—put), and can in principle be de-
incoming coupling strength to nodeand the off-diagonal el-  termined from the eigenvalues of the coupling matrix scaled
ement/;; is the negative of the directional interaction strengthas{ \;} and the master stability function [6], which is de-
from nodej to nodei. Thus, if there is a link frony to 4, fined by the node dynamics, form of the coupling, and syn-
the influence of oscillatoj on oscillatori is proportional to  chronous state. Before tinte= 0, the nodes are uncoupled
[u;(t) — u;(t)]. MatricesA, B, andC represent the filter and evolve independently. At time= 0, the couplings in
in state-space. The filter band is fram /27 = 0.1kHz to  the network are enabled by switchimgrom 0 to 0.7, and
we /27 = 2.5kHz. Regarding the other parametefs= 3.6iS  the network converges to a synchronous solution. In order
a lumped effective feedback strength that combines the gaifd avoid problems with zero crossings, we perform a boxcar

factors of various componentsis a global coupling strength, moving-average over a small time interval 6t) to form
d = Tr(L)/N is a normalization factor defined by the av-

erage coupling per nodey is a phase bias set to/4, and
7 = 1.5ms is the net feedback delay. Equations (1-2) are ()

a network generalization of the one- and two-oscillator sys
tems considered in Refs. [10, 11]. This network model admits
synchronous solutions, (t) = z3(¢) - - - = xn(t), whose ex-

perimental realization is the focus of this study. m=12 =1 m=10
. . e . =1{0,4,4.4} ={0,3.44} A={0334} ‘0333
Consider a network ofV oscillators andn = Tr(L) di- (op“mal nelwork) (Opumal network)
rected links, of which our experimental system is an exam-
ple. Since all the rows of matrif. sum to 0,L has at ‘~b ;
least one null eigenvalue. The eigenvalue spectrum= 4 A I °
{0, A2, A3, ..., An } of L determines whether the synchronous & °
solutions for a given network configuration are stable [6, 7] m=1 m=06 m=3 m=4 m=3
. . A=1{0223} A={0222} A={0,122} A={0,1,12} A={0,1,1,1}
Consider the eigenvalue spread [8], (optimal network) (optimal network)
N (b) T T T T T T T T 1T
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which measures the range of coupling strengfior stable
synchronization and hence tlsgnchronizability for general
directed networks. Smaller eigenvalue spread impliesérigh © o T T T T T T T T T T
synchronizability. Focusing on networks with the smallest =
eigenvalue spread for given number of nodes and links, Ref. 7

[8] shows that the eigenvalue spread has cusp-like minima £ |
with o = 0 whenm = k(N — 1) ando > 0 for all networks T
with k(N—-1) <m < (k+1)(N—-1), wherek =1,2,..., N. -1.4
The networks minimizing for a given number of nodes and B AT S S S R SR
links are termedptimal if o = 0 andsuboptimal if o > 0 ' 34005 Ngmbgr ofglinkz m10 112
(all the others are termatbnoptimal). In Fig. 2(a), we show ’

a sequence of 4-node (_)ptlmal ?”d suboptlmal netV\_lorks WIﬂIEIG 2. Non-monotonic behavior of synchronization projestt (a)
decreasing number of links, which are considered in our ex;

. . . A path from a fully connected network{ = 12) to an optimal tree
periment. The eigenvalue spreadf these networks exhibit ot ork (n — 3). At each step, the link removed is indicated by

pronounced non-monotonicity as a function of the number of, gashed line. (b) The eigenvalue spreafbr the networks in (a).
links [Fig. 2(b)]. (c) Experimentally measured mean convergence rate to symiza-
In our experimental study, we first focus on the influence oftion, fz, and associated standard deviation (bars) for the same net-
network structure on synchronization properties. To thid e works. The largest rate of convergence is observed wheruinder
of network links is a multiple ofV — 1 = 3.
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(6(t)). We measure: by fitting the smoothened synchro-
nization error(f(t)) to an exponential over a fixed time in-
terval from0.5ms to2.0ms. For each network, our statistics is
based on performing this measurement 66 independent
realizations of the initial conditions. The results shown i
Fig. 2(c) indicate only small variability across differeetl-
izations. More important, contrary to what has been usually
assumed, the measured mean convergenceiratéound to (b) 1.0 Fxoorin T T T
. . . L xperiment
change highly non-monotonically, with periodic peaks a& th
points where the number of links is a multiple(@¥ — 1) [8]. AN
The eigenvalue spreadis seen to be inversely related to the &
=

g;=3
O— o—-0—0—0

nonsensitive sensitive
configuration configurations

convergence rate to synchronization, i.e., the largemihess,
the slower the approach to synchronization. Results fgelar
networks are included in supplementary information, Fiy. S

If experimental noises, delays and mismatches could be ne- -3.0
glected, the synchronization properties would be entidely
termined by the eigenvalues of the coupling matrix [6, 7]. In
particular, each network in the sequence of Fig. 2(a) is-char
acterized by eigenvalues that minimize the spreadThe
sequence of optimal and suboptimal networks considered in . \ M
our experiments of Fig. 2(c) was generated by starting from / ey
a fully connected network and successively removing links ‘
while keeping the coupling matrix diagonalizable, so that t
stability of the synchronous states could be analyzed withi
the standard master stability approach [6]. However, the co time, 7 (ms)
pling matrices of directed networks are not necessarilg-dia
onalizable. There are in fact many more Opt|ma| and SubopE|G. 3. Diﬁerentiating behgvior between sgnsitive andsmitive
timal networks with the exact same eigenvalues of those corfléWorks. (a) All optimal binary networks withnodes and links.
sidered in Fig. 2(a), but that are not diagonalizable bezaus=2c" NeWork is labeled according to its geometric degegera.
they have a number of independent eigenvectors smaller th B) Experimentally measure(b(t)) for sensitive (greeng, = 3)

. . d nonsensitive (blugy = 1) configurations, where the coupling
N [7]. For instance, out of four 4-node optimal networks is enabled at = 0. The individual curves represent measurements

with three links [Fig. 3(a)], one is diagonalizable and &re yepeated forl00 different initial conditions for each network. (c)
are nondiagonalizable. (For the set of all optimal and subnumerical simulation of the same networks and conditionssich
optimal binary 4-node networks, see supplementary infermaered in (b). Inset: differenca ;. between the decay exponents of the
tion, Table S1.) Given that depends only on the eigenvalues, networks considered in (b) when simulated in the absencei®f m
one might expect that experimental realizations of nonmliag matches, noises, and time delays, as a functidgi{©)f regarded as a
nalizable networks would exhibit properties similar togho tunable initial synchronization error.
observed for the diagonalizable counterparts.

In Fig. 3(b), we experimentally compare the approach to/€ctor. In the star network, each eigenvalue is associaitixd w
synchrony of two networks, a directed star and a directed lin@ linearly independent eigenvector, and hegce- 1. In the
ear chain, which have the maximum and minimum number of@se of the linear chain, all three nonzero eigenvaluessare a
independent eigenvectors, respectively. These two nkswor Sociated with the same eigenvector, and hepce 3. While
are optimal and have the same number of nodes and link&e focus on optimal and suboptimal networks, where sensi-
and identical eigenvalues. We performea) independent tive networks are expected to be more common because of
measurements off(¢)) starting with different initial condi- ~their highly degenerate eigenvalue spectra, this claasitic
tions for both networks. However, both the convergence tIS0 applies to nonoptimal networks in general.

synchronization and the oscillations after synchronizatire Compared to the nonsensitive case, the sensitive networks
systematically different for these two networks. We reter t exhibit slower convergence to synchronization and, aatifss
networks with nondiagonalizable coupling matricesasi-  ferent realizations, larger variations around the avesge

tive networks, since the experiments show that they are morechronization trajectory [Fig. 3(b)]. In particular, whithe
susceptible to the influence of imperfections typical of-rea nonsensitive network has an exponential convergence to syn
istic conditions. On the other hand, networks with diagenal chronization, the sensitive network has a non-exponertral
izable coupling matrices are found to be fairly robust undewergence, which is in agreement with the polynomial tramtsie
the same conditions, and are referred tovassensitive net-  theoretically predicted for such networks [7]. Moreovée t
works. Mathematically, these two different types of networksbundle of trajectorie8(t) is broader by a factor of ten for the
can be categorized according to thg@ometric degeneracy,  sensitive network over the nonsensitive network in the-tran
g4, Which is the largest number of repeated eigenvalues of thsient to synchronization. This difference, we hypothesize
coupling matrix associated with the same (degeneratefeige due to the different response exhibited by these diffeyges
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(2)0 (b) o nonsensitive osensitive P difference shown in Fig. 3(c) (and, for larger networks, in supplemsnta
~ F i ]z ' i ' information, Fig. S2), with this parameter choice our siaul
=] 1 % PP 1
[Ze] . . . .
%*2-0: gootoe® cotd T | P . tion of the system mimics the key features observed in the
Taopg ® : 1% . addda: experiment to a remarkable degree.

000 003 006 009 012 000 003 006 009 012 The parameter dependence is further investigated in Fig. 4,

© Observationalnoise, g Observational noise, n where we simulate the dependence of the average synchro-
_ T T T 2T nization floor and the variation around it for sensitive and
= P ~ . . . . . .
001 : > 21 S | ! i nonsensitive configurations, as a function of the najseis-
zr N S 1 £ |eeeesesasans match, ¢, and the feedback delay time, The floor itself
0.00—p—t=L > 1 1 3.0 1 1 ) 1 1 . . N X . !
0800 0005 0010 0015 0020 00 05 10 T3 30 25 30 is mainly determined by the observational noise. The differ

Coupling mismatch, Time delay, t (ms) ence in the variations around the floor is mainly determined
by the coupling mismatch. The time delay, on the other hand,
is found to have very limited influence on these properties.
As shown in supplementary information, Fig. S3, similar re-
sults hold for larger networks. Our simulations also show
that oscillator mismatch and dynamical noise comparable to
¢ andn would lead to very large difference between the av-
erage synchronization floor of sensitive and nonsensitgte n
works; since this is not observed experimentally we posit th
these two factors are likely to be extremely small in the expe
iment. Incidentally, this also illustrates the distinctura of

the problem considered in this study compared to eigenkecto
dependent synchronization in externally forced systeri [1

of networks to experimental perturbations, since in the ab- """ . . )
sence of mismatches, noises, and delays, the asymptagic raqnd in systems with oscillator mismatches [13, 14]. On the

of convergence is expected to be the same. The latter is cofiner hand, while we classify our networks according to de-
firmed in the inset of Fig. 3(c), where we simulated Eqs. (1-2 enlfracy of tf;}gb.el%gfrf'lvectozs, V\lle n;)te that nor;§en5|t|v§ net
under these conditions, thus recovering the predictioripre f or sthcan ?X Ioit di ETth Iclevgs 0 n?nnormalt%/r,] rang;lr;t

ously established for the idealized Pecora-Carroll mo8gl [ rom the extreme in which all éigenvectors are orthogonal to
The essence of this phenomenon is that convergence to ze £ case in which two or more of them are nearly parallel.

is the same for both types of networks, but to a finite synchro; mong the nonsensitive nerorks, itis thus expected t_hat ro
nization floor it is not. bustness to perturbation will be further strengthenedéfyth

are closer to normal, which is a phenomenon previously iden-
To test our hypothesis, we have simulated Egs. (1-2) in th@fied in fluid and drive-response systems [15, 16].

presence of observational noise and coupling mismatch. The The experimental results presented here verify that in a
coupling mismatch is taken to be independent perturbat®dns network of diffusively-coupled oscillators the rate of ven
the nonzero off diagonal elementsof in Eq. (1) drawn from  gence to synchronization depends non-monotonically on the
a Gaussian diStribution W|th Zero mean a.nd Standard demiati number of links. We also predict and experimenta”y demon-
<. The observational noise is modeled as the difference b%‘trate that' depending onthe eigenvector properties afdbhe
tween the actuat;(t) in the system, described by Eqg. (2), and pling matrix, co-spectral networks can exhibit quantitaily
the observed:;(t), drawn from a Gaussian distribution with and qualitatively different convergence to synchrony. sThi
zero mean and standard deviatipnBased on the dominant stydy introduces the concept of sensitive and nonsensigite
factors in the experimental setup, we choose these values {gorks, providing objective criteria for determining theotrst-
ben = 0.06 and; = 0.01, which are estimates for the round- ness of real networks based on their eigenvector degersraci
ing error in the recording of the data and coupling mismatch e thank C. Williams for designing the amplifier circuit

FIG. 4. Dependence of synchronization properties on exparial
parameters. Setting observational noise= 0.06, coupling mis-
match¢ = 0.01, and time delayr = 1.5ms (dashed lines), which
approximate the values estimated in the experiment, welatetu
the effect of varying one of these parameters at a time. Eath d
point is estimated from 1000 independent realizations lier riet-
works considered in Fig. 3(b,c). (a) effectzpbn the ensemble mean
synchronization flooy; (b) effect of;; on the standard deviation of
the floor,d; (c) effect of¢ on §; and (d) the effect of on,. The
superscript: (s) denotes the nonsensitive (sensitive) network.

due to realistic imperfections in the network constructida
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