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Experimental studies of synchronization properties on networks with controlled connection topology can
provide powerful insights into the physics of complex networks. Here, we report experimental results on the
influence of connection topology on synchronization in fiber-optic networks of chaotic optoelectronic oscilla-
tors. We find that the recently predicted non-monotonic, cusp-like synchronization landscape manifests itself
in the rate of convergence to the synchronous state. We also observe that networks with the same number of
nodes, same number of links, and identical eigenvalues of the coupling matrix can exhibit fundamentally dif-
ferent approaches to synchronization. This previously unnoticed difference is determined by the degeneracy of
associated eigenvectors in the presence of noise and mismatches encountered in real-world conditions.

PACS numbers: 05.45.Xt, 89.75.-k, 87.18.Sn

Recent research [1] has shown that network structure plays
a significant role in cascading failures [2], epidemics [3],and
recovery of lost network function [4]. Synchronization of cou-
pled dynamical units is a widespread phenomenon that has
served as an examplepar excellence of this line of theoretical
research [5]. For example, by modeling network synchroniza-
tion in terms of diffusively-coupled identical oscillators, it has
been shown that the stability of fully synchronous states isen-
tirely determined by the eigenvalue spectrum of the coupling
matrix [6, 7]. A fundamental yet largely unexplored question
concerns the robustness of such network-based predictions.

New insight into this question has been provided by a recent
study on networks that optimize the synchronization range
[8]. It is predicted that synchronization properties, suchas
the coupling cost at the synchronization threshold and range
of coupling strength for stability, will exhibit a highly non-
monotonic, cusp-like dependence on the number of nodes and
links of the network [8], contrary to the prevailing paradigm.
The existence of such cusps indicate that small perturbations
of the network structure, which might be experimentally un-
avoidable, may lead to large changes in the network dynamics.

In this work, we experimentally demonstrate that the rate
of convergence to synchronous states, a broadly significant
synchronization property, follows the theoretically predicted
non-monotonic trend. More important, we observe that net-
works with identical eigenvalue spectra (generally assumed
to behave in similar fashion) can exhibit qualitatively differ-
ent convergence properties. We classify these networks into
two groups, which we termnonsensitive networks andsensi-
tive networks, respectively. This classification is based on the
properties of theeigenvectors of the coupling matrix and the
observation that networks with different eigenvector degen-
eracies will respond differently to perturbations typicalof ex-
perimental conditions. In contrast to sensitive networks,non-
sensitive networks are predicted and experimentally observed
to be robust against these perturbations. We identify observa-
tional noise and mismatch of coupling strengths as the main
experimental factors underlying these different responses.

Our experimental setup consists of a network ofN = 4

optoelectronic feedback loops. The feedback loops are simi-
lar in construction to those used by Argyriset al. for chaotic
communication [9]. Each feedback loop (Fig. 1) comprises
a semiconductor laser which provides a steady optical power,
a Mach-Zehnder electro-optic intensity modulator, two pho-
toreceivers, a digital signal processing (DSP) board which
provides electronic filtering and time delay, and an amplifier.
The optical output of each electro-optic modulator is propor-
tional to cos2(xi + φ0), wherexi is the normalized electri-
cal input voltage that characterizes each oscillator, andφ0 is
the operating point of the modulator. The signalsxi(t) are
recorded using a four-channel, 8-bit digital oscilloscope. The
modulator output is split to act as the feedback signal and as
the coupling signal to the other nodes, with each coupling link
either enabled or disabled using optical attenuators. In our ex-
periments, all the couplings are set to have the same strength.
At each node, the feedback and the coupling signals are pro-
cessed using the DSP board. The parameters of each loop are
set such that the oscillators exhibit high-dimensional chaos.
The DSP board implements a 2-pole digital bandpass filter
and a time delay on both the feedback and coupling signals.
A diffusive-coupling scheme is implemented through the DSP
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FIG. 1. Schematic of a single optoelectronic node. Each nodeis
coupled to the rest of the network (not shown) through fiber-optic
links. The couplings are enabled/disabled using optical attenuators.
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board. The equations that describe each node in the experi-
mental network are derived in Ref. [10], and are given by:

dui(t)

dt
= Aui(t)−Bβ cos2[xi(t− τ) + φ0], (1)

xi(t) = C

(

ui(t)−
ǫ

d

∑

j

ℓijuj(t)
)

, (2)

whereA =

[

−(ω1 + ω2) −ω2

ω1 0

]

, B =

[

ω2

0

]

, C = [1 0] .

Here,ui(t) is a 2 × 1 vector describing state of the filter at
nodei, andxi(t) is the observed variable. The oscillators are
diffusively coupled through the network specified by the cou-
pling matrixL = (ℓij); the diagonal elementℓii ≥ 0 is the net
incoming coupling strength to nodei and the off-diagonal el-
ementℓij is the negative of the directional interaction strength
from nodej to nodei. Thus, if there is a link fromj to i,
the influence of oscillatorj on oscillatori is proportional to
[uj(t) − ui(t)]. MatricesA, B, andC represent the filter
in state-space. The filter band is fromω1/2π = 0.1kHz to
ω2/2π = 2.5kHz. Regarding the other parameters,β = 3.6 is
a lumped effective feedback strength that combines the gain
factors of various components,ǫ is a global coupling strength,
d ≡ Tr(L)/N is a normalization factor defined by the av-
erage coupling per node,φ0 is a phase bias set toπ/4, and
τ = 1.5ms is the net feedback delay. Equations (1-2) are
a network generalization of the one- and two-oscillator sys-
tems considered in Refs. [10, 11]. This network model admits
synchronous solutionsx1(t) = x2(t) · · · = xN (t), whose ex-
perimental realization is the focus of this study.

Consider a network ofN oscillators andm ≡ Tr(L) di-
rected links, of which our experimental system is an exam-
ple. Since all the rows of matrixL sum to 0,L has at
least one null eigenvalue. The eigenvalue spectrumΛ =
{0, λ2, λ3, . . . , λN} ofL determines whether the synchronous
solutions for a given network configuration are stable [6, 7].
Consider the eigenvalue spread [8],

σ2 ≡
1

d2(N − 1)

N
∑

i=2

|λi − λ|2, whereλ ≡

∑N

i=2
λi

(N − 1)
, (3)

which measures the range of coupling strengthǫ for stable
synchronization and hence thesynchronizability for general
directed networks. Smaller eigenvalue spread implies higher
synchronizability. Focusing on networks with the smallest
eigenvalue spread for given number of nodes and links, Ref.
[8] shows that the eigenvalue spread has cusp-like minima
with σ = 0 whenm = k(N − 1) andσ > 0 for all networks
with k(N−1) < m < (k+1)(N−1), wherek = 1, 2, . . . , N .
The networks minimizingσ for a given number of nodes and
links are termedoptimal if σ = 0 andsuboptimal if σ > 0
(all the others are termednonoptimal). In Fig. 2(a), we show
a sequence of 4-node optimal and suboptimal networks with
decreasing number of links, which are considered in our ex-
periment. The eigenvalue spreadσ of these networks exhibit
pronounced non-monotonicity as a function of the number of
links [Fig. 2(b)].

In our experimental study, we first focus on the influence of
network structure on synchronization properties. To this end

we consider stable synchronous states, which correspond to
configurations for which the synchronization error, definedas

θ(t) ≡
1

N(N − 1)

∑

i,j

|xi(t)− xj(t)|, (4)

ideally approaches zero. For real networks that synchronize,
this error converges to a synchronization floor,θ0, determined
by experimental mismatches and noise. Figure 2(c) shows
the experimentally measured rate of convergence to synchro-
nization for the sequence of optimal and suboptimal networks
shown in Fig. 2(a). This rate of convergence is defined as
the exponentµ of the exponential decay to the synchroniza-
tion floor, (θ − θ0) ∼ exp(−µt), and can in principle be de-
termined from the eigenvalues of the coupling matrix scaled
as{ ǫ

d
λi} and the master stability function [6], which is de-

fined by the node dynamics, form of the coupling, and syn-
chronous state. Before timet = 0, the nodes are uncoupled
and evolve independently. At timet = 0, the couplings in
the network are enabled by switchingǫ from 0 to 0.7, and
the network converges to a synchronous solution. In order
to avoid problems with zero crossings, we perform a boxcar
moving-average over a small time interval onθ(t) to form
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FIG. 2. Non-monotonic behavior of synchronization properties. (a)
A path from a fully connected network (m = 12) to an optimal tree
network (m = 3). At each step, the link removed is indicated by
a dashed line. (b) The eigenvalue spreadσ for the networks in (a).
(c) Experimentally measured mean convergence rate to synchroniza-
tion, µ̄, and associated standard deviation (bars) for the same net-
works. The largest rate of convergence is observed when the number
of network links is a multiple ofN − 1 = 3.
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〈θ(t)〉. We measureµ by fitting the smoothened synchro-
nization error〈θ(t)〉 to an exponential over a fixed time in-
terval from0.5ms to2.0ms. For each network, our statistics is
based on performing this measurement for100 independent
realizations of the initial conditions. The results shown in
Fig. 2(c) indicate only small variability across differentreal-
izations. More important, contrary to what has been usually
assumed, the measured mean convergence rateµ̄ is found to
change highly non-monotonically, with periodic peaks at the
points where the number of links is a multiple of(N − 1) [8].
The eigenvalue spreadσ is seen to be inversely related to the
convergence rate to synchronization, i.e., the larger the spread,
the slower the approach to synchronization. Results for larger
networks are included in supplementary information, Fig. S1.

If experimental noises, delays and mismatches could be ne-
glected, the synchronization properties would be entirelyde-
termined by the eigenvalues of the coupling matrix [6, 7]. In
particular, each network in the sequence of Fig. 2(a) is char-
acterized by eigenvalues that minimize the spreadσ. The
sequence of optimal and suboptimal networks considered in
our experiments of Fig. 2(c) was generated by starting from
a fully connected network and successively removing links
while keeping the coupling matrix diagonalizable, so that the
stability of the synchronous states could be analyzed within
the standard master stability approach [6]. However, the cou-
pling matrices of directed networks are not necessarily diag-
onalizable. There are in fact many more optimal and subop-
timal networks with the exact same eigenvalues of those con-
sidered in Fig. 2(a), but that are not diagonalizable because
they have a number of independent eigenvectors smaller than
N [7]. For instance, out of four 4-node optimal networks
with three links [Fig. 3(a)], one is diagonalizable and three
are nondiagonalizable. (For the set of all optimal and sub-
optimal binary 4-node networks, see supplementary informa-
tion, Table S1.) Given thatσ depends only on the eigenvalues,
one might expect that experimental realizations of nondiago-
nalizable networks would exhibit properties similar to those
observed for the diagonalizable counterparts.

In Fig. 3(b), we experimentally compare the approach to
synchrony of two networks, a directed star and a directed lin-
ear chain, which have the maximum and minimum number of
independent eigenvectors, respectively. These two networks
are optimal and have the same number of nodes and links
and identical eigenvalues. We performed100 independent
measurements of〈θ(t)〉 starting with different initial condi-
tions for both networks. However, both the convergence to
synchronization and the oscillations after synchronization are
systematically different for these two networks. We refer to
networks with nondiagonalizable coupling matrices assensi-
tive networks, since the experiments show that they are more
susceptible to the influence of imperfections typical of real-
istic conditions. On the other hand, networks with diagonal-
izable coupling matrices are found to be fairly robust under
the same conditions, and are referred to asnonsensitive net-
works. Mathematically, these two different types of networks
can be categorized according to theirgeometric degeneracy,
gd, which is the largest number of repeated eigenvalues of the
coupling matrix associated with the same (degenerate) eigen-
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FIG. 3. Differentiating behavior between sensitive and nonsensitive
networks. (a) All optimal binary networks with4 nodes and3 links.
Each network is labeled according to its geometric degeneracy, gd.
(b) Experimentally measured〈θ(t)〉 for sensitive (green,gd = 3)
and nonsensitive (blue,gd = 1) configurations, where the coupling
is enabled att = 0. The individual curves represent measurements
repeated for100 different initial conditions for each network. (c)
Numerical simulation of the same networks and conditions consid-
ered in (b). Inset: difference∆µ between the decay exponents of the
networks considered in (b) when simulated in the absence of mis-
matches, noises, and time delays, as a function ofθ(t), regarded as a
tunable initial synchronization error.

vector. In the star network, each eigenvalue is associated with
a linearly independent eigenvector, and hencegd = 1. In the
case of the linear chain, all three nonzero eigenvalues are as-
sociated with the same eigenvector, and hencegd = 3. While
we focus on optimal and suboptimal networks, where sensi-
tive networks are expected to be more common because of
their highly degenerate eigenvalue spectra, this classification
also applies to nonoptimal networks in general.

Compared to the nonsensitive case, the sensitive networks
exhibit slower convergence to synchronization and, acrossdif-
ferent realizations, larger variations around the averagesyn-
chronization trajectory [Fig. 3(b)]. In particular, whilethe
nonsensitive network has an exponential convergence to syn-
chronization, the sensitive network has a non-exponentialcon-
vergence, which is in agreement with the polynomial transient
theoretically predicted for such networks [7]. Moreover, the
bundle of trajectoriesθ(t) is broader by a factor of ten for the
sensitive network over the nonsensitive network in the tran-
sient to synchronization. This difference, we hypothesize, is
due to the different response exhibited by these different types
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FIG. 4. Dependence of synchronization properties on experimental
parameters. Setting observational noiseη = 0.06, coupling mis-
matchζ = 0.01, and time delayτ = 1.5ms (dashed lines), which
approximate the values estimated in the experiment, we simulated
the effect of varying one of these parameters at a time. Each data
point is estimated from 1000 independent realizations for the net-
works considered in Fig. 3(b,c). (a) effect ofη on the ensemble mean
synchronization floor,θ0; (b) effect ofη on the standard deviation of
the floor,δ; (c) effect ofζ on δ; and (d) the effect ofτ on θ0. The
superscriptn (s) denotes the nonsensitive (sensitive) network.

of networks to experimental perturbations, since in the ab-
sence of mismatches, noises, and delays, the asymptotic rate
of convergence is expected to be the same. The latter is con-
firmed in the inset of Fig. 3(c), where we simulated Eqs. (1-2)
under these conditions, thus recovering the prediction previ-
ously established for the idealized Pecora-Carroll model [8].
The essence of this phenomenon is that convergence to zero
is the same for both types of networks, but to a finite synchro-
nization floor it is not.

To test our hypothesis, we have simulated Eqs. (1-2) in the
presence of observational noise and coupling mismatch. The
coupling mismatch is taken to be independent perturbationsto
the nonzero off diagonal elements ofℓij in Eq. (1) drawn from
a Gaussian distribution with zero mean and standard deviation
ζ. The observational noise is modeled as the difference be-
tween the actualxi(t) in the system, described by Eq. (2), and
the observedxi(t), drawn from a Gaussian distribution with
zero mean and standard deviationη. Based on the dominant
factors in the experimental setup, we choose these values to
beη = 0.06 andζ = 0.01, which are estimates for the round-
ing error in the recording of the data and coupling mismatch
due to realistic imperfections in the network construction. As

shown in Fig. 3(c) (and, for larger networks, in supplementary
information, Fig. S2), with this parameter choice our simula-
tion of the system mimics the key features observed in the
experiment to a remarkable degree.

The parameter dependence is further investigated in Fig. 4,
where we simulate the dependence of the average synchro-
nization floor and the variation around it for sensitive and
nonsensitive configurations, as a function of the noise,η, mis-
match,ζ, and the feedback delay time,τ . The floor itself
is mainly determined by the observational noise. The differ-
ence in the variations around the floor is mainly determined
by the coupling mismatch. The time delay, on the other hand,
is found to have very limited influence on these properties.
As shown in supplementary information, Fig. S3, similar re-
sults hold for larger networks. Our simulations also show
that oscillator mismatch and dynamical noise comparable to
ζ andη would lead to very large difference between the av-
erage synchronization floor of sensitive and nonsensitive net-
works; since this is not observed experimentally we posit that
these two factors are likely to be extremely small in the exper-
iment. Incidentally, this also illustrates the distinct nature of
the problem considered in this study compared to eigenvector-
dependent synchronization in externally forced systems [12]
and in systems with oscillator mismatches [13, 14]. On the
other hand, while we classify our networks according to de-
generacy of the eigenvectors, we note that nonsensitive net-
works can exhibit different levels of nonnormality, ranging
from the extreme in which all eigenvectors are orthogonal to
the case in which two or more of them are nearly parallel.
Among the nonsensitive networks, it is thus expected that ro-
bustness to perturbation will be further strengthened if they
are closer to normal, which is a phenomenon previously iden-
tified in fluid and drive-response systems [15, 16].

The experimental results presented here verify that in a
network of diffusively-coupled oscillators the rate of conver-
gence to synchronization depends non-monotonically on the
number of links. We also predict and experimentally demon-
strate that, depending on the eigenvector properties of thecou-
pling matrix, co-spectral networks can exhibit quantitatively
and qualitatively different convergence to synchrony. This
study introduces the concept of sensitive and nonsensitivenet-
works, providing objective criteria for determining the robust-
ness of real networks based on their eigenvector degeneracies.
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