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We present microscopic coupled-cluster calculations of the spectroscopic factors for proton removal
from the closed-shell oxygen isotopes 14,16,22,24,28O with a chiral nucleon-nucleon interaction at next-
to-next-to-next-to-leading order. We include coupling-to-continuum degrees of freedom by using a
Hartree-Fock basis built from a Woods-Saxon single-particle basis. This basis treats bound and
continuum states on an equal footing. We find a significant quenching of spectroscopic factors in
the neutron-rich oxygen isotopes, pointing to enhanced many-body correlations induced by strong
coupling to the scattering continuum above the neutron emission thresholds.
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The concept of independent particle motion, and
mean-field approaches based thereupon, has played and
continues to play a fundamental role in studies of quan-
tum mechanical many-particle systems. From a theoreti-
cal standpoint, a single-particle (or quasiparticle) picture
of states near the Fermi surface offers a good starting
point for studies of systems with many interacting parti-
cles. For example, the success of the nuclear shell model
rests on the assumption that the wave functions used in
nuclear structure studies can be approximated by Slater
determinants built on various single-particle states. The
nuclear shell model assumes thus that protons and neu-
trons move as independent particles with given quantum
numbers, subject to a mean field generated by all other
nucleons. Deviations from such a picture have been in-
terpreted as a possible measure of correlations. Indeed,
correlations are expected to reveal important features of
both the structure and the dynamics of a many-particle
system beyond the mean-field picture.

In a field like nuclear physics, where the average den-
sity in nuclei is high and the interaction between nucleons
is strong, correlations beyond the independent-particle
motion are expected to play an important role in spectro-
scopic observables. Experimental programs in low-energy
nuclear physics aim at extracting information at the lim-
its of stability of nuclear matter. Correlations which arise
when moving towards either the proton or the neutron
dripline should then provide us with a better understand-
ing of shell structure and single-particle properties of nu-
clei. So-called magic nuclei are particularly important
for a fundamental understanding of single-particle states
outside shell closures, with wide-ranging consequences
spanning from our basic understanding of nuclear struc-
ture to the synthesis of the elements [1, 2]. Unfortunately,
the correlations in many-particle systems are very diffi-
cult to quantify experimentally and to interpret theoret-
ically. There are rather few observables from which clear
information on correlations beyond an independent par-

ticle motion in a nuclear many-body environment can be
extracted.

A quantity which offers the possibility to study de-
viations from a single-particle picture, and thereby pro-
vide information on correlations, is the spectroscopic fac-
tor (SF). From a theoretical point of view they quan-
tify what fraction of the full wave function can be in-
terpreted as an independent single-particle or single-hole
state on top of a correlated state, normally chosen to
be a closed-shell nucleus. Although not being experi-
mentally observable [3–5], the radial overlap functions,
whose norm are the SFs, are required inputs to theo-
retical models for nucleon capture, decay, transfer and
knockout reactions. There is a wealth of experimental
data and theoretical analysis of such reactions for sta-
ble nuclei [1, 6, 7]. Data from (e, e′p) experiments on
stable nuclei [1] indicate that proton absolute SFs are
quenched considerably with respect to the independent
particle model value, with short-range and tensor corre-
lations assumed to be an important mechanism. Adding
long-range correlations as well from excitations around
the Fermi surface, one arrives at a quenching of 30−40%,
see for example Ref. [8]. Nuclear physics offers therefore
a unique possibility, via studies of quantities like SFs, to
extract information about correlations beyond mean-field
in complicated, two-component, many-particle systems.

Recent data on knockout reactions on nuclei with large
neutron-proton asymmetries indicate that the nucleons
of the deficient species, being more bound, show larger
reductions of spectroscopic strength than the less bound
excess species [9, 10]. It is the aim of this work to under-
stand which correlations are important when one moves
towards more weakly bound systems. For this, we study
the chain of oxygen isotopes and compute SFs for proton
removal from 14,16,22,24,28O. These isotopes span a large
range of proton-neutron asymmetries, from 4/3 in 14O
to 2/5 in 28O. Using ab initio coupled-cluster theory de-
scribed below [11], we argue that the reduction in SFs is
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due to many-body correlations arising from the coupling
to the scattering continuum in neutron-rich oxygen iso-
topes. After these introductory remarks, we give a brief
overview of our formalism, before presenting our results
and conclusions.

The spectroscopic factor SA
A−1(lj) =

∣

∣OA
A−1(lj; r)

∣

∣

2
, is

the norm of the overlap function,

OA
A−1(lj; r) =

∫

Σ
n
〈A− 1 ‖ ãnlj ‖A〉φnlj(r). (1)

Here, OA
A−1(lj; r) is the radial overlap function of the

many-body wave functions for the two independent sys-
tems with A and A−1 particles, respectively. In this work
we consider only overlaps with |A〉 in the ground state.
The double bar denotes a reduced matrix element, and
the integral-sum over n represents both the sum over the
discrete spectrum and an integral over the corresponding
continuum part of the spectrum. The annihilation opera-
tor ãnlj is a spherical tensor of rank j. The radial single-
particle basis function is given by the term φnlj(r), where
l and j denote the single-particle orbital and angular mo-
mentum, respectively, and n is the nodal quantum num-
ber. The isospin quantum number has been suppressed.
We emphasize that the overlap function, and hence also
its norm, is defined microscopically and independently
of the single-particle basis. It is uniquely determined by
the many-body wave functions |A〉 and |A− 1〉. From
the definition of the overlap function in Eq. (1) it is clear
that the SF is mainly a measure of how well nucleus A
can be described by a single, uncorrelated nucleon at-
tached to nucleus A − 1. Large deviations from unity
indicate an increased role of many-body correlations be-
yond a mean-field picture. For calculational details see
Ref. [12].

We use the coupled-cluster (CC) ansatz [11] |ψ0〉 =
exp (T ) |φ0〉 for the ground states of the closed-shell oxy-
gen isotopes 14,16,22,24,28O. The reference state, |φ0〉, is an
antisymmetric product state for all A nucleons. The clus-
ter operator T introduces correlations as a linear combi-
nation of particle-hole excitations T = T1+T2+ . . .+TA,
where Tn represents an n-particle-n-hole excitation op-
erator. For the CC singles and doubles approximation
(CCSD) employed in this work, T is truncated at the
level of double excitations, T = T1 + T2.

Due to the non-hermiticity of the standard CC for-
malism, we need to calculate both the left and the
right eigenvectors. These are determined via the
equation-of-motion CC (EOM-CC) approach as |A〉 ≈
|RA

ν (JA)〉 ≡ exp (T )RA
ν (JA) |φ0〉 and 〈A| ≈ 〈LA

ν (JA)| ≡
〈φ0|L

A
ν (JA) exp (−T ). The operators RA

ν (JA) and
LA
ν (JA) produce linear combinations of particle-hole ex-

cited states when acting to the right and left, respec-
tively. In the spherical form of the EOM-CC approach,
the operators have well defined angular momentum by
construction, as indicated by JA, which stands for the
angular momentum considered. If the A-body system is

in its ground state, the right EOM-CC wave function is
identical to the CC ground state.

Solutions for the A − 1-body systems are ob-
tained with particle-removed equation-of-motion
coupled-cluster method, truncated at the level of
2-hole-1-particle excitations. Here, we use the
CCSD ground state solution of the closed-shell
nucleus A as the reference state in order to deter-
mine the corresponding left and right eigenvectors
|A− 1〉 ≈ |RA−1

µ (JA−1)〉 ≡ exp (T )RA−1
µ (JA−1) |φ0〉 and

〈A− 1| ≈ 〈LA−1
µ (JA−1)| ≡ 〈φ0|L

A−1
µ (JA−1) exp (−T ).

In actual calculations, the EOM-CC wave functions
are obtained by determining the operators RA

ν (JA) and
LA
ν (JA) as eigenvectors of the similarity-transformed

Hamiltonian, H = exp (−T )H exp (T ). We refer the
reader to Refs. [11, 13, 14] for details about EOM-CC.

Finally, we can write the SF in the spherical CC for-
malism as

SA
A−1(lj) =

∫

Σ
n
〈LA−1

µ (JA−1)||ãnlj ||R
A
ν (JA)〉

× 〈RA−1
µ (JA−1)||ãnlj ||L

A
ν (JA)〉

∗

, (2)

where we have used the similarity-transformed spherical
annihilation operator defined in Ref. [12]. The labels µ
and ν are included to distinguish between states in |A〉
and |A− 1〉.

The intrinsic A-nucleon Hamiltonian reads Ĥ = T̂ −
T̂cm + V̂ , where T̂ is the kinetic energy, T̂cm is the kinetic
energy of the center-of-mass coordinate, and V̂ is the
two-body nucleon-nucleon (NN) interaction. We employ
here the N3LO model of Entem and Machleidt [15]. This
interaction model is constructed with a cutoff of Λ = 500
MeV. Calculations starting from this Hamiltonian have
been shown to generate CC solutions that are separa-
ble into a Gaussian center-of-mass wave function and an
intrinsic wave function, see for example Refs. [14, 16].

We use a Hartree-Fock (HF) solution for the reference
state, as detailed in for example Ref. [13]. These HF
solutions were built from the standard harmonic oscilla-
tor (HO) basis combined with Woods-Saxon (WS) single-
particle bound- and scattering states for selected partial
waves. The role of the continuum is expected to be im-
portant close to the dripline, as seen in Refs. [13, 17, 18].
For this purpose we use a spherical WS basis for the
neutron s1/2, d3/2, and d5/2 partial waves. The single-
particle bound and scattering states are obtained by
diagonalizing a one-body Hamiltonian with a spherical
Woods-Saxon potential defined on a discretized set of real
momenta. We employ a total of 30 mesh points along the
real momentum axis for each of the s1/2, d3/2, and d5/2
neutron partial waves. For the harmonic oscillator basis
we included all single-particle states spanned by 17 major
oscillator shells.

Figure 1 shows the calculated SFs for removing a pro-
ton in the p1/2 and p3/2 partial waves of 14,16,22,24,28O.
We compare our calculations of the SFs to calculations
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FIG. 1: (Color online) Normalized spectroscopic factors
for p1/2 and p3/2 proton removal from the oxygen isotopes
14,16,22,24,28O. The continuum states included in the calcu-
lation (HF-WS) lead to a dramatic quenching of the spec-
troscopic factors as the neutron dripline is approached. For
comparison, we show calculations of spectroscopic factors us-
ing a HF basis built entirely from harmonic oscillator basis
functions (HF-OSC).

using an HF basis built entirely from harmonic oscilla-
tor basis functions (HF-OSC, dashed lines). The results
are obtained with an harmonic oscillator energy ~ω = 30
MeV. Our calculations of the SFs depend weakly on the
harmonic oscillator frequency, see for example Ref. [12].
The p1/2 and p3/2 proton orbitals are close to the Fermi
level. In a traditional shell-model picture we would there-
fore expect SFs close to unity for such states. However,
we find a significant quenching of the SFs due to the
coupling-to-continuum degrees of freedom. The calcu-
lations done with a HF-OSC basis show no significant
quenching, and illustrate clearly the limitation of the
harmonic oscillator basis representation of weakly-bound,
neutron-rich nuclei. This observation agrees also nicely
with the analysis of Michel et al. [19]. There, the authors
demonstrate that the energy dependence of SFs due to an
opening of a reaction channel can only be described prop-
erly in shell-model calculations if correlations involving
scattering states are treated properly.

In our calculations the closed-shell oxygen isotopes
14,16,22,24,28O are all bound with respect to neutron emis-
sion (for this particular N3LO interaction with cutoff
Λ = 500 MeV). In particular, we get 28O bound by 3.67
MeV with respect to one-neutron emission. However,
starting from an N3LO interaction with a cutoff Λ = 600
MeV, we get 28O unbound with respect to four-neutron
emission and 24O, as seen in Ref. [20]. To judge the the-
oretical basis for the demonstrated continuum effect, we
also computed SFs for the proton removal from 14,16,22O
using the Λ = 600 MeV N3LO interaction model. We
found similar results as for the Λ = 500 MeV N3LO in-

teraction model, and conclude that the theoretical uncer-
tainties related to short range correlations do not seem
to impair the results reported here.

To further understand the role of correlations beyond
mean-field we compared the SF for p1/2 proton removal
from 24O for three different approximations to |A〉 and
|A− 1〉. To get bound solutions for 24O in simpler
calculation schemes, we softened the N3LO interaction
through similarity renormalization group (SRG) meth-
ods [21]. For each approximation we considered three
values of the SRG flow parameter λ = 3.2, 3.4, 3.6fm−1.
First, in the crudest approximation, using a mean-field
HF solution for |A〉 and |A− 1〉, the SFs are by defini-
tion equal to unity. Secondly, we used a HF solution for
|A〉 while |A− 1〉 was approximated by one-hole and two-
hole-one-particle excitations on the HF ground state |A〉.
In this case we observed about 15−20% reduction in the
SFs. Finally, our EOM-CC approach in Eq. (2), gave a
reduction of 20−25% over the range of λ considered. This
clearly shows the importance of correlations beyond the
mean-field. Varying the SRG flow parameter from 3.2fm-
1 to 3.6fm-1 we found that the SFs varied from 0.79 to
0.75, illustrating the role of short range correlations.

The shape of the calculated overlap functions reveals
more information. In order to probe the sensitivity of the
tail of the overlap functions as we move towards 28O, we
compute the ratios of the absolute square of the radial
overlap functions to the |〈15N|alj |

16O〉|2 radial overlap
function. These results are shown in Fig. 2 for the p1/2
proton state (the p3/2 proton state shows a very similar
pattern). A notable reduction of these norms towards
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FIG. 2: (Color online) Ratio of the radial overlap functions
〈13N|alj |

14O〉, 〈15N|alj |
16O〉, 〈21N|alj |

22O〉, 〈23N|alj |
24O〉, and

〈27N|alj |
28O〉 for the p1/2 single-particle state.

more neutron-rich nuclei is seen. The downward dip of
the overlap ratios at larger radii comes from the fact that
the p1/2 proton orbital become more and more bound as
more neutrons are added to 16O. For 14O the p1/2 pro-
ton is less bound with respect to 16O, resulting in a bend
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upward. As we approach the neutron dripline, the one-
neutron emission thresholds for the oxygen isotopes and
their neighboring nitrogen isotopes get closer to the scat-
tering threshold. Clearly, the tail of the wave functions
will play a more important role as the outermost neutrons
get closer to the scattering threshold. It is exactly this
effect we observe in our calculations of the SFs for proton
removal. Using a HF basis of purely harmonic oscillator
wave functions, the density in the interior region of the
nucleus is overestimated, while the density is shifted to-
wards the tail when using a basis with correct asymptotic
behavior. One should note that the nitrogen isotopes for
a given neutron number are more loosely bound than
their corresponding oxygen isotones, and this is the es-
sential reason for the reduction. For 28O and 27N, no
experimental values are available but if 28O exists it will
be very loosely bound and we may assume that 27N is
unbound.
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FIG. 3: Plot of calculated SFs as functions of the difference
between the calculated neutron and proton separation ener-
gies. The results are for the single-particle states closest to
the Fermi surface. For protons these are the p1/2-states.

Finally, we show in Fig. 3 the SFs of the proton and
neutron states closest to the Fermi surface (for protons
the p1/2-state), as a function of the difference between the
computed proton and neutron separation energies. The
results here agree excellently with similar interpretations
made in Refs. [9, 10]. One sees clearly an enhancement
of correlations for the strongly bound, deficient nucleon
species with increasing asymmetry.

In conclusion, we have found a large quenching of the
spectroscopic factors for the deeply bound proton states
near the Fermi surface in the neutron-rich oxygen iso-
topes. This can be ascribed mainly to many-body corre-
lations arising from a proper treatment of neutron scat-
tering states. These results agree nicely with the math-
ematical analysis performed by Michel et al [19]. This

result for the oxygen isotopes is similar to what has been
inferred from neutron knockout reaction cross sections
for deeply-bound neutron states near the Fermi surface in
proton-rich sd-shell nuclei [9, 10]. Clearly, more work is
needed to confirm the connection; experiments for proton
knockout from oxygen should be undertaken and many-
body calculations for proton-rich, heavy nuclei need to
be carried out.
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