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A central question in our understanding of the physical world is how our knowledge of the whole
relates to our knowledge of the individual parts. One aspect of this question is the following: to
what extent does ignorance about a whole preclude knowledge of at least one of its parts? Relying
purely on classical intuition, one would certainly be inclined to conjecture that a strong ignorance
of the whole cannot come without significant ignorance of at least one of its parts. Indeed, we
show that this reasoning holds in any non-contextual hidden variable model (NC-HV). Curiously,
however, such a conjecture is false in quantum theory: we provide an explicit example where a large
ignorance about the whole can coexist with an almost perfect knowledge of each of its parts. More
specifically, we provide a simple information-theoretic inequality satisfied in any NC-HV, but which
can be arbitrarily violated by quantum mechanics. Our inequality has interesting implications for
quantum cryptography.

In this note we examine the following seemingly inno-
cent question: does one’s ignorance about the whole nec-
essarily imply ignorance about at least one of its parts?
Given just a moments thought, the initial reaction is gen-
erally to give a positive answer. Surely, if one cannot
know the whole, then one should be able to point to an
unknown part. Classically, and more generally for any
deterministic non-contextual hidden variable model, our
intuition turns out to be correct: ignorance about the
whole does indeed imply the existence of a specific part
which is unknown, so that one can point to the source of
one’s ignorance. However, we will show that in a quan-
tum world this intuition is flawed.

THE PROBLEM

Let us first explain our problem more formally. Con-
sider two dits y0 and y1 ∈ {0, . . . , d−1}, where the string
y = y0y1 plays the role of the whole, and y0, y1 are the
individual parts. Let ρy denote an encoding of the string
y into a classical or quantum state. In quantum theory,
ρy is simply a density operator, and in a NC-HV model
it is a preparation Py described by a probability distribu-
tion over hidden variables λ ∈ Λ. Let PY be a probability
distribution over {0, . . . , d − 1}2, and imagine that with
probability PY (y) we are given the state ρy. The op-
timum probability of guessing y given its encoding ρy,
which lies in a register E, can be written as

Pguess(Y |E) = max
{M}

∑
y∈{0,...,d−1}2

PY (y) p(y|M,Py) , (1)

where p(y|M,Py) is the probability of obtaining out-
come y when measuring the preparation Py with M,
and the maximization is taken over all d2-outcome mea-
surements allowed in the theory. In the case of quan-
tum theory, for example, the maximization is taken over
POVMs M = {My}y and p(y|M,Py) = tr(Myρy). The

guessing probability is directly related to the conditional
min-entropy H∞(Y |E) through the equation [2]

H∞(Y |E) := − logPguess(Y |E) . (2)

This measure plays an important role in quantum cryp-
tography and is the relevant measure of information in
the single shot setting corresponding to our everyday ex-
perience, as opposed to the asymptotic setting captured
by the von Neumann entropy. The main question we are
interested in can then be loosely phrased as:

How does H∞(Y = Y0Y1|E) (ignorance about
the whole) relate to H∞(YC |EC), for C ∈
{0, 1} (ignorance about the parts)?

Here the introduction of the additional random vari-
able C is crucial, and it can be understood as a pointer to
the part of Y about which there is large ignorance (given
a large ignorance of the whole string Y ); see Figure 1
for an illustration of this role. It is important to note
that the choice of C should be consistent with the en-
coding prior to its definition. That is, whereas C may of
course depend on Y0, Y1 and the encoding E, the reduced
state on registers holding Y0, Y1 and E after tracing out
C should remain the same. In particular, this condi-
tion states that C cannot be the result of a measurement
causing disturbance to the encoding register; if we were
allowed to destroy information in the encoding we would
effectively alter the original situation

RESULTS

An inequality valid in any NC-HV model.
We first show that classically, or more generally in

any non-contextual hidden variable model [20], ignorance
about the whole really does imply ignorance about a part.
More specifically, we show that for any random variable
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Y = Y0Y1 and side information E, there exists a random
variable C ∈ {0, 1} such that

H∞(YC |EC) &
H∞(Y0Y1|E)

2
. (3)

This inequality can be understood as an information-
theoretic analogue of Bell inequalities to the question of
non-contextuality. Classically, this inequality is known
as the min-entropy splitting inequality, and plays an im-
portant role in the proof of security of some (classical)
cryptographic primitives [3, 4]. The proof of (3) is a
straightforward extension to the case of standard NC-
HV models [7, 8] of a classical technique known as min-
entropy splitting first introduced by Wullschleger [3], and
we defer details to the appendix.

The fact that C is a random variable, rather than be-
ing deterministically chosen, is important, and an ex-
ample will help clarify its role. Consider Y uniformly
distributed over {0, . . . , d − 1}2 and E = Y0 with prob-
ability 1/2, and Y1 with probability 1/2. In this case it
is easy to see that both Y0 and Y1 can be guessed from
E with average success probability 1/2 + 1/(2d), so that
H∞(Y0|E) = H∞(Y1|E) ≈ 1, which is much less than
H∞(Y |E) ≈ log d. However, define C as 0 if E = Y1 and
1 if E = Y0. Then it is clear that H∞(YC |EC) = log d, as
we are always asked to predict the variable about which
we have no side information at all! In this case the ran-
dom variable C “points to the unknown” by being cor-
related with the side information E, but is entirely con-
sistent with our knowledge about the world: by tracing
out C we recover the initial joint distribution on (Y,E).
This also highlights the important difference between the
task we are considering and the well-studied random ac-
cess codes [5, 6], in which the requirement is to be able
to predict one of Y0, Y1 (adversarially chosen) from their
encoding; for this task it has been demonstrated that
there is virtually no asymptotic difference between clas-
sical and quantum encodings.

It is interesting to note that (3) still holds if we con-
sider a somewhat “helpful” physical model in which in
addition to the encoding one might learn a small number
of “leaked” bits of information about Y . More specifi-
cally, if the NC-HV discloses m extra bits of information
then it follows from the chain rule for the min-entropy
(see appendix) that

H∞(YC |EC) &
H∞(Y0Y1|E)

2
−m . (4)

Violation in quantum theory. Our main result
shows that (3) is violated in the strongest possible sense
by quantum theory. More specifically, we provide an ex-
plicit construction that demonstrates this violation: Let
Y = Y0Y1 be uniformly distributed over {0, . . . , d − 1}2.
Given y = y0y1 ∈ {0, . . . , d − 1}2, define its encoding
ρEy0y1

= |Ψy〉〈Ψy| as

|Ψy〉 := Xy0

d Zy1

d |Ψ〉 , (5)

where Xd and Zd are the generalized Pauli matrices and

|Ψ〉 :=
1√

2
(

1 + 1√
d

) (|0〉+ F |0〉) , (6)

with F being the matrix of the Fourier transform over
Zd. Since we are only interested in showing a quantum
violation, we will for simplicity always assume that d is
prime. The system Y E is then described by the ccq-state

ρY0Y1E =
1

d2

∑
y0,y1

|y0〉〈y0| ⊗ |y1〉〈y1| ⊗ ρEy0y1
. (7)

We first prove that H∞(Y |E) = log d for our choice of
encoding. We then show the striking fact that, even
though the encoding we defined gives very little infor-
mation about the whole string Y , for any adversarially
chosen random variable C (possibly correlated with our
encoding) one can guess YC from its encoding ρE with
essentially constant probability. More precisely, for any
ccqc-state ρY0Y1EC , with C ∈ {0, 1}, that satisfies the
consistency relation trC(ρY0Y1EC) = ρY0Y1E , we have

H∞(YC |EC) ≈ 1 (8)

for any sufficiently large d. This shows that the inequal-
ity (3) can be violated arbitrarily (with d), giving a strik-
ing example of the malleability of quantum information.
What’s more, it is not hard to show that this effect still
holds even for Hε

∞, for constant error ε, and a “helpful”
physical model leaking m ≈ c log d bits of information
with c < 1/2. Hence, the violation of the inequality (3)
has the appealing feature of being very robust.

Implications for cryptography. Our result answers
an interesting open question in quantum cryptogra-
phy [11], namely whether min-entropy splitting can still
be performed when conditioned on quantum instead of
classical knowledge. This technique was used to deal
with classical side information E in [4, 12]. Our example
shows that quantum min-entropy splitting is impossible.

PROOF OF THE QUANTUM VIOLATION

We now provide an outline of the proof that the en-
coding specified in (5) leads to a quantum violation of
the splitting inequality (3); for completeness, we provide
a more detailed derivation in the appendix. Our proof
proceeds in three steps: first, by computing H∞(Y |E)
we show that the encoding does indeed not reveal much
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FIG. 1: One can understand our result in terms of a game between

Bob and a malicious challenger, the Owl. Imagine Bob is taking a

philosophy class teaching him knowledge about Y , chosen uniformly at

random. Unfortunately, he never actually attended and had insufficient

time to prepare for his exam. Luckily, however, he has been given

an encoding E of the possible answers Y0Y1, hastily prepared by his

old friend Alice. When entering the room, he had to submit E for

inspection to the challenger who knows Y0, Y1 as well as the encoding

Alice might use. After inspection, the challenger may secretly keep a

system C, possibly correlated with E, but such that the reduced system

on Y0, Y1 and E looks untampered with. It is immediately obvious to

the challenger that Bob must be ignorant about the whole of Y0Y1. But

can it always measure and point to a C = c such that Bob is ignorant

about Yc? Classically, this is indeed possible: ignorance about the

whole of Y0Y1 implies significant ignorance about one of the parts, YC .

However, a quantum Bob could beat the Owl.

information about the whole. Second, we compute the
optimal measurements for extracting Y0 and Y1 on aver-
age, and show that these measurements perform equally
well for any other prior distribution on Y . Finally, we
show that even introducing an additional system C does
not change one’s ability to extract YC from the encoding.

Step 1: Intuitively, ignorance about the whole string
follows from Holevo’s theorem and the fact that we are
encoding 2 dits into a d-dimensional quantum system. To
see this more explicitly, recall that H∞(Y |E) = log d is
equivalent to showing that Pguess(Y |E) = 1/d. From (1)
we have that this guessing probability is given by the
solution to the following semidefinite program (SDP)

maximize 1
d2

∑
y0,y1

tr (My0y1
|Ψy0y1

〉〈Ψy0y1
|)

subject to My0y1 ≥ 0 for all y0, y1 ,∑
y0,y1

My0,y1
= I .

The dual SDP is easily found to be

minimize Tr(Q)
subject to Q ≥ 1

d2 |Ψy0y1
〉〈Ψy0y1

| for all y0, y1 .

Let vprimal and vdual be the optimal values of the pri-
mal and dual respectively. By the property of weak
duality, vdual ≥ vprimal always holds. Hence, to prove
our result, we only need to find a primal and dual so-
lutions for which vprimal = vdual = 1/d. It is easy

to check that Q̂ = I/d2 is a dual solution with value

vdual = tr(Q̂) = 1/d. Similarly, consider the measure-
ment My0y1 = |Ψy0y1〉〈Ψy0y1 |/d. Using Schur’s lemma,
one can directly verify that

∑
y0,y1

My0y1 = I, giving
vprimal = 1/d.

Step 2: A similar argument, exploiting the symmetries
in the encoding, can be used to show that

Pguess(Y0|E) = Pguess(Y1|E) =
1

2
+

1

2
√
d
. (9)

The measurements that attain these values are given by
the eigenbases of Zd and Xd respectively.

Simply computing (9) is hence insufficient for our pur-
poses. Let us write {|y0〉, y0 ∈ {0, . . . , d − 1}} for the
eigenbasis of Zd, and note that its Fourier transform
{F |y1〉, y1 ∈ {0, . . . , d− 1}} is then the eigenbasis of Xd.
Exploiting the symmetries in our problem, it is straight-
forward to verify that for all y0, y1 ∈ {0, . . . , d− 1}

|〈y0|Ψy0y1
〉|2 = |〈y1|F †|Ψy0y1

〉|2 =
1

2
+

1

2
√
d
. (10)

An important consequence of this is that for any other
prior distribution Py0y1 , measurement in the Zd eigenba-
sis distinguishes the states

σy0
=
∑
y1

Py0y1
(y0, y1)|Ψy0y1

〉〈Ψy0y1
| , (11)

with probability at least 1/2 + 1/(2
√
d), even when the

distribution is unknown. A similar argument can be
made for the marginal states σy1

and measurement in
the Xd eigenbasis.

Step 3: It now remains to show that, for any possi-
ble choice of an additional classical system C [21], one
can still guess YC from the encoding with a good suc-
cess probability: one cannot construct a C which would
“point to the unknown”. Note that we may express the
joint state with any other system C as

ρY0Y1EC =
1

d2

∑
y0y1

|y0〉〈y0| ⊗ |y1〉〈y1| ⊗ ρEC
y0y1c , (12)

for some states ρEC
y0y1c on registers E and C. Since the

reduced state on Y0,Y1 and E should be the same for any
C we have by the fact that Y0 and Y1 are classical that
trC(ρEC

y0y1c) = |Ψy0y1
〉〈Ψy0y1

|. Since |Ψy0y1
〉〈Ψy0y1

| is a

pure state, this implies that ρEC
y0y1c = |Ψy0y1

〉〈Ψy0y1
| ⊗

σC
y0y1

. Now imagine that we were to perform some arbi-
trary measurement on C, whose outcome would suppos-
edly point to an unknown substring. This merely creates
a different distribution Py0y1 over encoded strings, and
we already know from the above that we can still suc-
ceed in retrieving either y0 or y1 with probability at least
1/2+1/(2

√
d) by making a measurement in the Xd or Zd

basis respectively. Hence for large d we have a recovery
probability of roughly 1/2, implying our main claim

H∞(Y0|EC = 0) ≈ H∞(Y1|EC = 1) ≈ 1 . (13)
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DISCUSSION

The first indication that something may be amiss when
looking at knowledge from a quantum perspective was
given by Schrödinger [13], who pointed out that one can
have knowledge (not ignorance) about the whole, while
still being ignorant about the parts [22]. Here, we tackled
this problem from a very different direction, starting with
the premise that one has ignorance about the whole.

Our results show that contextuality is responsible for
much more significant effects than have previously been
noted. In particular, it leads to arbitrarily large quantum
violations of (3), which can be understood as a Bell-type
inequality for non-contextuality. This is still true even
for a somewhat “helpful” physical model, leaking addi-
tional bits of information. To our knowledge, this is the
first information-theoretic inequality distinguishing NC-
HV models from quantum theory. While in this work, we
have restricted our attention to deterministic NC-HVs, it
is an interesting open question whether our results can
be generalized to general models that distinguish between
measurement and preparation contextuality [1].

At the heart of our result lies the fact that contextual-
ity allows for strong forms of complementarity in quan-
tum mechanics (often conflated with uncertainty [14]),
which intuitively is responsible for allowing the violation
of (3). Typically, complementarity is discussed by con-
sidering examples of properties of a physical system that
one may be able to determine individually, but which
cannot all be learned at once. We, however, approach
the problem from the other end, and first demonstrate
that in an NC-HV ignorance about the whole always im-
plies ignorance about a part. We then show that in a
quantum world, this principle is violated in the strongest
possible sense, even with respect to an additional system
C. One could think of this as a much more robust way
of capturing the notion of complementarity [15].

Finally, it is an interesting open question whether our
inequality can be experimentally verified. Note that this
made difficult by the fact that our aim would be to test
ignorance rather than knowledge. However, it is con-
ceivable that such an experiment can be performed by
building a larger cryptographic protocol whose security
relies on being ignorant about one of the parts of a string
Y created during that protocol [23]. A quantum viola-
tion could then be observed by breaking the security of
the protocol, and exhibiting knowledge (rather than igno-
rance) about some information that could not have been
obtained if the protocol was secure.
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