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Abstract

A novel nonempirical scaling correction (SC) method is developed to tackle the challenge of band

gap prediction in density functional theory. For finite systems the SC largely restores the straight-

line behavior of electronic energy at fractional electron numbers. The SC can be generally applied to

a variety of main-stream density functional approximations, leading to significant improvement on

band gap prediction. In particular, the scaled version of a modified localized density approximation

(MLDA) predicts band gaps with an accuracy consistent for systems of all sizes, ranging from atoms

and molecules to solids. The scaled MLDA thus provides a useful tool to quantitatively characterize

the size-dependent effect on the energy gaps of nanostructures.
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Accurate prediction of band gaps is one of the critical challenges in density functional

theory (DFT) with potential wide applications. The capability to predict gaps for systems

of all sizes is critical for study of material interfaces, but currently remains out of reach

within DFT.

For a system ofN electrons (N is an integer) in an external potential v(r), its fundamental

(or integer) band gap isEint
gap = I−A, where I = Ev(N−1)−Ev(N) is the ionization potential,

and A = Ev(N) − Ev(N + 1) is the electron affinity. With n additional fractional electron

(0 < n < 1), the system energy as a function of n is given by the Perdew–Parr–Levy–Balduz

(PPLB) condition:1 it is a straight line interpolation between energies at integer points, i.e.,

Ev(N + n) = (1 − n)Ev(N) + nEv(N + 1). Such a linear relation infers that, in principle

Eint
gap should be exactly reproduced by the derivative gap, i.e., the difference between left and

right energy derivatives at N : Eder
gap ≡ lim

n→0
( ∂Ev

∂N

∣

∣

N+n
− ∂Ev

∂N

∣

∣

N−n
) = Eint

gap. More specifically,

the exact DFT should give I = − lim
n→0

∂Ev

∂N

∣

∣

N−n
and A = − lim

n→0

∂Ev

∂N

∣

∣

N+n
.1,2

In the Kohn–Sham (KS) scheme3 where the exchange-correlation (XC) energy is an ex-

plicit functional of electron density, i.e., Exc = Exc[ρ(r)], it has been proved that ∂Ev

∂N
= ǫf ,

with ǫf being the KS frontier orbital energy.2 f is either the highest occupied molecular

orbital (HOMO) if N is approached from N − n, or otherwise the lowest unoccupied molec-

ular orbital (LUMO). Therefore, Eder
gap = ǫLUMO − ǫHOMO. The same situation applies to

the generalized KS scheme, where Exc = Exc[ρs(r, r
′)] with ρs(r, r

′) being the KS first-order

reduced density matrix. Therefore, if the linearity condition could be satisfied, I = −ǫHOMO,

A = −ǫLUMO, and thus Eder
gap = Eint

gap should be realized in DFT.2

The actual fractional charge behavior of Ev(N + n) of standard density functional ap-

proximations (DFAs) is summarized as follows: (i) Local density approximation (LDA) and

generalized gradient approximation (GGA) give reasonable I, A, and hence Eint
gap for small

systems. However, they predict much too high ǫHOMO and too low ǫLUMO, and thus greatly

underestimate Eder
gap. This is due to the delocalization error, which gives an overall convex en-

ergy curve.4 (ii) Hartree–Fock (HF) gives less accurate energies at integers, due to the lack of

electron correlation. Its significant localization error leads to a rather concave energy curve,5

and severe overestimation of Eder
gap. (iii) Hybrid and range-separated hybrid DFAs such as

B3LYP,6 PBE0,7 HSE,8 and HISS9 have both convex and concave ingredients. Delocaliza-

tion error is generally not compensated by localization error, resulting in a convex energy

curve and underestimation of Eder
gap.

10 (iv) Self-interaction correction (SIC) of Perdew and
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Zunger11 straightens the LDA/GGA energy curve, but significantly degrades the description

of integers.12 (v) Long-range corrected DFAs such as MCY313 and rCAM–B3LYP13 achieve

the correct straight-line behavior.14 They yield accurate Eint
gap and Eder

gap for atoms and small

molecules, but the error increases significantly as the system size grows. Therefore, none of

the existing DFAs is capable of predicting band gaps with consistent accuracy for systems

of all sizes.

To fix this problem, we start with a DFA which gives reasonable band gaps for solids,

and then improve its prediction on atoms and molecules of all sizes. For bulk systems,

the convexity of LDA energy curve is suppressed by infinite system size.4 However, delocal-

ization error remains at integers, resulting in significant underestimation of band gaps for

nonmetallic solids by LDA. Bylander and Kleinman15 have combined screened HF exchange

with long-range LDA. The resulting DFA, the modified LDA (MLDA), improves the band-

gap prediction for semiconductors. They used exp(−Ksr)
r

as the screened Coulomb operator

with Ks being a function of ρ(r).15 A different range separation scheme, 1
r
= erf(µr)

r
+ erfc(µr)

r
,

has been popular in the DFT community.13,16,17 Here, erf(x) is the error function and

erfc(x) = 1− erf(x). Employing the erf-splitting and VWN518 for correlation, we have

EMLDA
xc = ESR,HF

x + ELR,LDA
x + ELDA

c . (1)

The form of ELR,LDA
x is given in Refs. 16 and 19. We choose µ = 0.5 bohr−1 as it is within

the typical range for screened exchange length.16 Our calculations clearly indicate MLDA

systematically improves over LDA; see Fig. 1. MLDA gives a mean absolute error (MAE)

of 0.22 eV for 13 covalent crystals with gaps below 7 eV. For large-gap ionic and noble gas

crystals, the error increases with the gap, due to the weaker dielectric screening in these

materials. Nevertheless, MLDA still outperforms LDA. For metals MLDA correctly predicts

zero gaps.19 We notice that other approaches have recently been proposed to improve solid

band gaps.20,21

Much like LDA, MLDA gives a convex energy curve for atoms and molecules. To achieve

accurate Eder
gap for finite systems, it is essential to reduce the delocalization error by restoring

the linearity condition. The total electronic energy in DFT is Ev = Ts + Vext + J + Exc.

With the KS orbitals fixed as the electron number is varied, the KS kinetic energy Ts and

external potential energy Vext are linear in ρ(r); while the electron Coulomb energy J [ρ] is
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quadratic, and Exc[ρ] is usually nonlinear in ρ(r). Therefore, a linear Ev(N + n) can be

achieved by linearizing both J [ρ] and Exc[ρ] with respect to n, the main goal of our scaling

correction (SC).19

As the number of electrons increases from N to N + n, ρ(r) varies as ρN+n(r) ≃

ρN (r) + nf(r), with f(r) = lim
n→0

∂ρN+n(r)

∂n
|v(r) being the Fukui function.22 Consider g(r) ≡

∫

dr′ ρs(r, r
′) ρs(r

′, r) =
∑

i∈occ n
2
i |φi(r)|

2, with φi(r) and ni being the ith KS orbital and

occupation number. At 0 < n < 1, ρ(r) − g(r) = (n − n2) |φf(r)|
2, with φf(r) being the

fractionally occupied KS orbital. The square of spinless first-order reduced density matrix

has been used for describing the distributions of odd electrons23 and effectively unpaired

electrons.24

The SC to J [ρ] is obtained as19

∆J(N + n) =
n− n2

2

∫∫

dr dr′
f(r)f(r′)

|r− r′|

≃
1

2

∫∫

dr dr′
[ρ(r)− g(r)] |φf(r

′)|2

|r− r′|
. (2)

where f(r) ≃ |φf(r)|
2 is used in the second step. At integer points, ∆J = 0 due to ρ(r) =

g(r). However, ∂∆J
∂n

is nonzero at either n = 0 or 1. This nonzero derivative gives a finite

correction to ǫf and Eder
gap.

For the XC energy only the exchange part is treated, since the SC to correlation energy is

much smaller. The SC to exchange energy, ∆EDFA
x , can be obtained by exploring the scaling

relation of exchange energy at fractional electron occupation. We derive the form of ∆EDFA
x

for a variety of main-stream DFAs, including LDA, GGA, hybrid functional B3LYP, and

range-separated functional MLDA. The detailed derivations are provided in Ref. 19. For all

the DFAs investigated, the SC contribution to exchange energy takes the following generic

form:

∆EDFA
x =

∫

dr [ρ(r)− g(r)] θDFA
x

(

|φf |
2; r

)

. (3)

Here, the function θDFA
x (r) depends explicitly on |φf(r)|

2. We emphasize that the form of

θDFA
x is nonempirical (free of any fitted parameter) for LDA, GGA, and B3LYP. Combining

Eqs. (2)–(3), the XC energy associated with a scaled DFA (S–DFA) is thus

ES−DFA
xc = EDFA

xc +∆J +∆EDFA
x . (4)
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This is the central result of this work. Specifically,

θMLDA
x (r) = −

1

2

∫

dr′
[

|φf(r
′)|2 erfc (µ|r− r′|)

|r− r′|

]

− αµCx |φf(r)|
2

3 , (5)

with Cx = 3
4

(

6
π

)
1

3 . We choose the semiempirical parameter αµ = 0.22222 at µ =

0.5 bohr−1.19

Although the self-consistent-field (SCF) process inevitably alters the KS orbitals and

modifies the scaling relation of each energy component, the scaling relation of total electronic

energy is largely maintained. This is validated by the fact that a scaled DFA generally yields

a much more straight energy curve than that by the original DFA,19 which also confirms that

the SC significantly reduces the delocalization error associated with a convex DFA.4 At an

integer point, the SC vanishes due to ρ(r) = g(r). Consequently, the S–DFA reproduces I,

A, and Eint
gap of the original DFA, while it improves significantly the prediction on ǫf and Eder

gap.

We emphasize that virtually no extra computational cost is required for the evaluation of the

SC–related quantities, and the SC method can be easily implemented in existing quantum

chemistry softwares; see Sec. I E of Ref. 19 for details.

For molecules it is the vertical I (Ive) and A (Ave) that are relevant to ǫf and Eder
gap. Here,

“vertical” means molecular geometry and hence v(r) do not change upon electron addition

or depletion. Meanwhile, many experimental results are referred to as “adiabatic” values

(Iad and Aad), where gaining or losing an electron is accompanied with geometry relaxation.

Table I summarizes the band-gap related quantities predicted by LDA, B3LYP, MLDA, and

their SC-counterparts. The calculations cover atoms H–Ar, molecules in the G2–97 set, and

representative solids in Fig. 1.25 Obviously, LDA, B3LYP and MLDA yield reasonable I and

A, but they all give considerable errors on ǫf . In other words, Eint
gap are obtained accurately,

but Eder
gap are severely underestimated. Inclusion of SC significantly improves prediction of

ǫf while preserving the accuracy of I and A. Among all the DFAs explored in Table I,

S–MLDA gives the most accurate Eder
gap with consistent accuracy for systems of all sizes, i.e.,

from atoms and molecules to solids. Figure 2 compares ǫHOMO (ǫLUMO) with −Ive (−Ave) for

all the atoms and molecules studied, where MLDA results display systematic discrepancies

between pairs of quantities, which are apparently removed by using S–MLDA.

The quantity of primary significance in the proposed SC method is the Fukui function.
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For solids, the apparent linearity condition is satisfied without SC.4 The periodic boundary

condition requires f(r) = 0, and thus SC has no effect. In contrast, for finite systems

f(r) ≈ |φf(r)|
2, and linearity condition is restored by SC.

An important application of SC is prediction of size-dependent effect on band gaps of

nanostructures, which has remained formidable in DFT. For instance, the quantitative re-

lation between band gap and Si nanoparticle size has been studied extensively,26,27 as it

highlights the significance of quantum confinement. GW method28 has been used to pre-

dict Eder
gap through the quasiparticle orbital energies.29 Reasonable Eint

gap have been obtained

by DFT–LDA for small size clusters, but not for large ones.26 Eder
gap by LDA suffer from

considerable delocalization error, which is expected to be removed by SC.

We calculated Eder
gap of H–passivated Si nanoparticles of various diameters (d). Computa-

tional details are provided in Ref. 19. The Eder
gap(d) obtained by S–LDA correctly reproduces

Eint
gap by LDA as reported in Ref. 26; see Fig. 3. This confirms the efficacy of SC on removing

delocalization error at fractional occupation. Analogously, SC enlarges the MLDA gaps, and

Eder
gap by S–MLDA agree well with the GW results.29 Noting that S–MLDA predicts more

accurate Eder
gap than S–LDA for both SiH4 (d → 0) and bulk Si (d → ∞),19 we believe the

S–MLDA prediction to be most reliable at any finite d. As it also inherits from MLDA

the capability of predicting thermodynamic properties with similar or better accuracy than

GGA,19 S–MLDA provides a useful tool to characterize quantitatively the size-dependent ef-

fects on physical properties of nanostructures. Stein et al. proposed a generalized KS method

to improve Eder
gap by optimizing the range-separation parameter µ for every system.30 Our SC

method is conceptually different, and no tuning of parameter is required. For S–MLDA, the

same value of µ is applied to all systems.

The significant improvement on band-gap prediction across system sizes achieved by the

SC affirms the understanding that it is useful to characterize DFT errors in the perspective

of fractional charges.31 The present SC method corrects the delocalization error in energy

derivatives for systems with integer electron numbers, using density matrix as a basic vari-

able. We believe this is a key step forward in the direction of correcting the delocalization

error in energy for systems with integer electron numbers, which is necessary to improve the

prediction of thermodynamic properties in DFT.
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MAE MLDA S– LDA S– B3LYP S–

atom

I (18) 0.16 0.16 0.30 0.30 0.20 0.20

A (15) 0.25 0.25 0.27 0.27 0.12 0.12

ǫH (18) 3.53 0.33 5.18 0.33 3.88 0.35

ǫL (15) 2.47 0.54 3.33 0.65 2.28 0.67

mole.

Iad (70) 0.22 0.22 0.21 0.21 0.16 0.16

Aad (47) 0.25 0.25 0.24 0.23 0.13 0.13

ǫH (70) 3.10 0.21 4.19 0.35 3.09 0.31

ǫL (47) 2.78 0.27 3.66 0.34 2.59 0.39

sol. Egap (18) 0.77 0.77 1.81 1.81 0.99 0.99

TABLE I: Summary of MAEs in eV. Numbers of species calculated are given in parantheses. “S–”

is short for scaled DFA. ǫHOMO (ǫLUMO) are compared to calculated Ive (Ave), and others are

compared to experimental values.25,32
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FIG. 1: Calculated versus experimental band gaps of a variety of nonmetallic solids. See Ref. 19

for details.
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FIG. 2: (a) Calculated ǫHOMO versus −Ive for 70 molecules (b) ǫLUMO versus −Ave for 47 molecules

from G2–97 set. Data for atoms H–Ar are shown in the insets, but without He, Ne, and Ar in inset

of (b). The solid line indicates ǫHOMO = −Ive in (a) and ǫLUMO = −Ave in (b).
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FIG. 3: Eder
gap of H–passivated Si nanoparticles. The LDA and GW predicted Eint

gap are extracted

from Refs. 26 and 29. The inset depicts ∆Egap(d) = Eder
gap(d)−Egap(bulk). It is fitted to ∆Egap(d) ≈

a(d−1)b, with b = 1.28, 0.99, 1.31, and 0.98 for LDA, S–LDA, MLDA, and S–MLDA, respectively.
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