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Non-equilibrium kinetic properties of alloy crystal-melt interfaces are calculated by molecular-
dynamics simulations. The relationships between interface velocity, thermodynamic driving force,
and solute partition coefficient are computed and analyzed within the framework of kinetic theories
accounting for solute trapping and solute drag. The results show a transition to complete solute
trapping at high growth velocities, establish appreciable solute drag at low growth velocities, and
provide insights into the nature of crystalline anisotropies and solute effects on interface mobilities.

There exists an extensive body of literature on the
patterns and morphologies that can form when a near-
equilibrium system evolves toward its equilibrium state
[1]. By contrast, the understanding of systems far from
equilibrium remains less advanced. A simple, yet il-
lustrative, example of a far-from-equilibrium process is
the rapid solidification of a highly undercooled melt.
Rapid solidification occurs in many contexts such as
laser-induced surface melting [2, 3], spray forming, and
welding. The process can be exploited to form supersatu-
rated solid solutions, metastable compounds, and glasses
[4]. Due to advances in mesoscale simulation methods
and a more detailed understanding of the thermodynamic
properties of crystal-melt (CM) interfaces, substantial
progress has been realized over the past decade in the
modeling of solidification under near-equilibrium condi-
tions [5]. By contrast, predictive models for rapid solid-
ification remain less developed, due in part to the need
for a more detailed understanding of the non-equilibrium
properties of CM interfaces.

Under rapid-solidification conditions, the solute con-
centrations at the CM interface can deviate significantly
from the values given by the equilibrium phase diagram,
a phenomenon commonly referred to as solute trapping

[2, 6–9]. Additionally, the growth of a crystal with a com-
position differing from that of its melt requires diffusion
of solute across the CM interface; the free-energy dissipa-
tion associated with this trans-interface diffusion leads to
a so-called solute drag effect that can significantly hinder
the transformation rate (e.g., [10, 11]). While theoretical
models [6, 7, 9, 10] have been extensively developed to ac-
count for such phenomena, several outstanding questions
remain. Specifically, the theory for solute trapping devel-
oped by Galenko and Sobolev [7] (see also [12]) predicts
a sharp transition to partitionless growth at a velocity
dictated by the atomic-scale relaxation processes in the
bulk liquid. By contrast, partitionless growth occurs only
in the asymptotic limit of infinite growth velocities in the
widely used theory of Kaplan and Aziz [6] and the most
recent theory of Jackson et al. [9]. Further, solute drag
is known to play an important role in a wide variety of

solid-state transformations, and it remains unclear why
it appears to be absent in the most detailed experimental
studies of rapid solidification performed to date [2]. Fi-
nally, the magnitude and anisotropy of the CM interface
mobility have been shown to be important factors in gov-
erning the morphology and growth velocities of dendrite
solidification at high undercoolings [13], yet no informa-
tion is currently available about the effect of solute atoms
on these kinetic properties.

To address these issues, we present here a method for
computing the kinetic properties of alloy CM interfaces
by molecular dynamics (MD) simulations. The work ex-
tends earlier MD studies of solute trapping [14, 15], by
providing a complete characterization of alloy CM inter-
face kinetic properties, including the nature of crystalline
anisotropies and the details of the velocity/driving-force
relations. The approach is applied to two model sys-
tems with atomically-rough CM interfaces, which both
crystallize in fcc crystal structures, but with differing de-
grees of equilibrium solute partitioning. The results show
a transition to complete trapping at high growth veloci-
ties, establish the presence of appreciable solute drag at
low velocities, and yield reduced interface mobilities in
alloys relative to the corresponding pure elements.

To investigate the kinetic properties of alloy CM inter-
faces we consider two model systems. For the first the
interatomic interactions take the form of the truncated
Lennard-Jones (LJ) potentials considered by Huitema et

al. [16], with the ǫ and σ values given in the supplemen-
tary information [17]. As shown in [17] the composition-
temperature phase diagram for this system features neg-
ligible solubility of the solute species (B) in the solid (A),
and thus displays a high degree of equilibrium solute par-
titioning. We consider also an embedded-atom-method
model for Ni-Cu, with a phase diagram [18] that displays
extensive solubility. Compared to the LJ system, Ni-Cu
has a larger partition coefficient of ke ≡ xe

s/x
e
l = 0.5,

where xe
s and xe

l denote equilibrium solidus and liquidus
compositions, respectively. We discuss results of the LJ
system in detail below, summarizing those for Ni-Cu for
comparison purposes; further details of the Ni-Cu results



2

0.0

1.5

3.0
ρ*

-8 -4 0 4 8
Z

*

0.00

0.01
XB

Crystal Melt

x
l

V
*

= 0.0103
= 0.0708

V
*

V
*

FIG. 1: (Color online). The averaged fine-grained profile for
the total density across a CM interface with a velocity V ∗ =
0.0103 in the model LJ alloy system is given in the upper
panel (the superscript ∗ denotes LJ reduced units as defined in
[17]). The smoothed, coarse-grained profile of the solute mole
fraction is given in the lower panel, where the solid and dashed
lines are for V ∗ = 0.0103 and V ∗ = 0.0708, respectively.

can be found in [17] and will be published elsewhere.

For both the LJ and Ni-Cu systems, crystallization
simulations begin from equilibrated two-phase solid-
liquid simulation cells, with each of the bulk phases pre-
pared at their equilibrium phase-boundary compositions
at a given temperature, and separated by CM interfaces
oriented along {100} or {110}. For each equilibrated sys-
tem, we induce crystal growth by decreasing the liquid
solute composition and/or lowering the system tempera-
ture. Several replicas are prepared, which are given dif-
ferent initial velocity distributions, and allowed to evolve
with independent trajectories. The positions of the CM
interfaces during the growth simulations are monitored
using a local structural order parameter. Equilibrium
density, temperature, and composition profiles are de-
rived by aligning each of the interfaces and computing
averages in the reference frame of the moving interface.
Details of the simulations and analysis are described in
[17]. The top panel of Fig. 1 shows a representative
fine-scale density profile, illustrating the diffuse nature
of the CM interface. The bottom panel plots a smoothed
coarse-grained solute concentration profile from a LJ sim-
ulation with a relatively low velocity (upper curve) and
the highest velocity considered (lower curve). For the
slower V results the peak in the concentration on the
liquid side of the interface reflects partitioning of the so-
lute. For the high V case the concentration profile is
nearly flat, indicating clearly solute-trapping behavior.

Figure 2 plots MD results for the non-equilibrium par-
tition coefficient k(V ) = xs/xl. As described in detail in
[17], we distinguish two cases in reporting these results,
based on the following analysis. The interfacial region is
divided into two parts, on the liquid and solid sides of the
CM interface, and the solute composition in the former
at a given time t0 is compared with that in the latter at

a later time t0 + δt, where δt is the time required for the
solid region to crystallize from the liquid. If the two com-
positions are statistically equivalent, we conclude that
the solidification is partitionless, i.e., k(V ) = 1. Other-
wise, k is computed taking xl as the peak composition
on the liquid side of the interface, and xs as the average
concentration of the solid crystallized, as illustrated in
Fig. 1. In Fig. 2, open-circle and filled-diamond symbols
correspond to {110} and {100} interfaces, respectively,
and show a statistically significant anisotropy.
We consider now a comparison of the k(V ) results with

available theories for solute trapping: The continuous-
growth model (CGM) of Kaplan and Aziz [6] is formu-
lated by considering flux balances across a moving CM in-
terface of width λ. The theory predicts that appreciable
trapping will occur when the interface moves at a charac-
teristic trapping velocity, VD, equal to the speed at which
a solute atom can traverse the interface: VD = D/λ,
where D is the liquid diffusivity. In the CGM the k(V )
function takes the following form (for dilute alloys):

k(V ) = [ke + (V/V CGM
D )]/[1 + (V/V CGM

D )] (1)

The local nonequilibrium model (LNM) of Galenko and
Sobolev [7] is based on a similar approach as the CGM,
but makes use of a generalized Fick’s law that accounts
for the finite relaxation time of the diffusion flux to its
steady state. The LNM yields:

k(V ) =
ke[1− (V/V LNM

B )2] + (V/V LNM
D )

1− (V/V LNM
B )2 + (V/V LNM

D )
(2)

for V less than the bulk liquid diffusion speed V LNM
B

(related to the relaxation time for the diffusion flux), and
k(V ) = 1 for V > V LNM

B . Finally, the most recent theory
for solute trapping due to Jackson et al. [9] is derived
using reaction rate theory to describe the the rate of atom
attachments to the active sites of a sharp CM interface.
For rough interfaces the theory yields:

k(V ) = k1/(1+AV )
e . (3)

where 1/A represents the characteristic velocities above
which k(V ) deviates strongly from ke.
In the lower panel of Fig. 2 the solid and dashed lines

are least-squares fits of the CGM and Jackson models to
all of the the LJ MD data. Both theories fit the data
for the lower velocities, where k 6= 1 with comparable
accuracy. However, the MD data at the highest V , which
is determined to be partitionless by the analysis of the
MD data, is naturally underestimated by these theories
which predict k → 1 as asymptotic behavior for V → ∞.
In the upper panel of Fig. 2 the solid lines represent
a fit of the LNM model to the data for which k 6= 1.
The fits of the {100} and {110} data predict a transition
to partitionless solidification at a velocity V LNM

B that
is independent of interface orientation, consistent with
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FIG. 2: (Color online). MD calculated values of the partition
coefficient (k) are plotted versus interface velocity (V ∗, in
reduced units) with open and filled symbols for {110} and
{100} interface orientations, respectively. Lines are fits of the
MD data to available theories (see text).

the LNM theory in which this parameter is controlled by
relaxation processes in the bulk liquid.
Table I lists the solute-trapping model parameters for

the theoretical models, derived from a fit to both the
LJ and Ni-Cu MD results. An appreciable anisotropy
is found for the trapping velocities for the LJ systems,
with {110}interfaces trapping at higher velocities than
{100}. For Ni-Cu, the statistical uncertainties are signif-
icantly higher due to the larger value of ke in this system.
However, the differences in trapping velocities for {100}
and {110} interfaces are smaller for Ni-Cu than the LJ
system, indicating that the anisotropy in this property
appears to be system dependent.
The second function required to define the growth ki-

netics in a sharp-interface theory is the relationship be-
tween V and the driving force for interface migration,
∆Gm. For the rough CM interfaces considered here this
relationship is taken as linear:

V = M∆Gm (4)

where M is the interface mobility. The driving force is
commonly written as ∆Gm = ∆Gchem − ∆GD, where
∆Gchem is the total chemical free energy change due to
solidification, and ∆GD is the free energy dissipated due
to solute drag (∆GD). Following Hillert [10] we have:

∆Gm = xeff∆µB + (1− xeff)∆µA (5)

where ∆µB denotes the difference between the chemical
potential of the solute species B in the solid versus the
liquid phase, and similarly for ∆µA. The effective com-
position xeff is defined as:

xeff = (1− f)xs + fxl (6)

where the limit f = 0 corresponds to ∆GD = 0, and
increasing values of f correspond to increasing values of
∆GD. In the version of the CGM that accounts for so-
lute drag f = 1, while in the model of Jönsson and Ågren
[19] it was assumed f = 1/2. The values of f can be de-
rived from diffuse-interface theories [10], where its exact
value depends on the assumptions concerning the nature
of the variations of the solute concentration and diffusion
coefficient across the CM interface. For the phase-field
model developed by Ahmad et al. [8], f = 24/35.

The top panel of Fig. 3 plots the LJ-MD values of V
versus ∆Gm, neglecting solute drag, i.e., assuming f = 0,
such that ∆Gm = ∆Gchem. A linear least squares fit
of the data (following Eq. (4)) is seen to overestimate
V for the slowest growth rates and underestimate the
data at the highest velocities. These discrepancies can be
attributed to the effects of solute drag. Specifically, by its
definition, ∆GD is significant only at the slower growth
rates where there is appreciable solute partitioning at the
CM interface. For the slowest velocities, solute drag has
the effect of reducing ∆Gm, while leaving the driving
force for the highest velocity points (where solidification
is essentially partitionless) unchanged. The lower panel
of Fig. 3 shows the best fit of the LJ MD data accounting
for solute drag using Eqs. (4)-(6). A much improved fit
of the data over the entire velocity range is now obtained
using a constant, velocity independent value of f . The
fitted value of f are given in Table I for both the LJ and
Ni-Cu systems. The values of f ≈ 0.3 are smaller than
but comparable in magnitude to those derived from the
diffuse interface theories mentioned above.

The slopes of the best-fit lines in the bottom panel of
Fig. 3 are the interface mobilities (M) defined in Eq.
(4). The values of M obtained from fits to the LJ and
Ni-Cu systems, accounting for solute drag, are listed in
Table I. As found previously for elemental systems with
fcc crystal structures (e.g., [5] and references therein), the
{100} orientation features an appreciably larger value of
M relative to {110} for the LJ system (the statistical
uncertainties for the Ni-Cu system are seen in Table I to
be too large to deduce anisotropy values). The kinetic
anisotropy M100/M110 = 1.48(2) derived for the LJ sys-
tem is in the range of values obtained in previous MD
simulations for fcc-based pure element systems [5]. The
magnitudes of M obtained for the LJ alloy system can
be compared directly to those for the pure solvent species
(element A), obtained with the same potentials. The ki-
netic anisotropy for the alloy is statistically equivalent to
the value of M100/M110 = 1.58(9) obtained for the pure
solvent. However, the magnitudes of the alloy mobilites
for each orientation are reduced by approximately 25 %
relative to the pure solvent.

Despite the fact that solute trapping and solute drag
are known to play crucial roles in the microscopic mech-
anisms underlying phase transformations in alloys, very
few experiments have examined both phenomena in the
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TABLE I: Values of the interface kinetic parameters, defined in Eqs. (1)-(6), from least-squares fits to the MD data for {100}
and {110} interface orientations. Numbers in parentheses are 95 % confidence intervals on the last significant figures.

Lennard-Jones Ni-Cu

V CGM

D V LNM

D V LNM

B A M f V CGM

D V LNM

D V LNM

B A M f

(
√

ǫ/m× 10−3 )
√

m/ǫ
√

1/mǫ ( m/s ) s/m m/s-eV

{100} 5.3(2) 6.3(3) 50(3) 10.5(4)×102 1.67(1) 0.36(1) 1.3(3) 1.4(4) 15(4) 1.1(3) 58(16)×102 0.3(2)

{110} 8.0(1) 9.6(2) 51(2) 6.9(1) ×102 1.13(1) 0.32(2) 1.5(3) 1.6(4) 21(10) 1.0(2) 49(9) ×102 0.3(2)
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FIG. 3: (Color online). The upper and lower panels plot MD
calculated velocities versus driving force with and without
solute drag, respectively. Lines are fits to Eq. (4).

context of crystal growth from the melt, and none have
probed the large range of velocities required to investi-
gate the dynamic transition to complete trapping. Here
we have calculated the kinetic properties of atomically-
rough CM interfaces directly by MD simulations. Results
for solute trapping at high V are consistent with the the-
ory of Ref. [7], which predicts an abrupt transition to
partitionless solidification at a velocity that is indepen-
dent of interface orientation. Further, we demonstrate
anisotropy in the CM interface mobility comparable to
that obtained for elemental fcc-forming systems, while
showing a tendency for reduced values of M in alloys rel-
ative to corresponding pure element systems. The MD
data indicates the presence of appreciable solute drag for
the systems considered. This finding is interesting given
that no measurable solute drag was found in the analy-
sis of detailed experimental measurements of the Si(As)
system presented in Ref. [2]. Further investigations of so-
lute drag are thus warranted, as the current results and
those in Ref. [2] suggest that the effect may be signif-
icantly different for systems with (directional) covalent
versus metallic bonding.
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