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We present cross sections for electron-impact ionization and simultaneous ionization plus exci-
tation of helium by electron impact. The results are obtained from a fully nonperturbative close-
coupling formalism using our B-Spline R-matrix approach. A large number of pseudostates in the
expansion of the total wave function represent the coupling to the ionization continuum. We obtain
excellent agreement with the directly measured experimental cross-section ratios (Bellm et al., Phys.
Rev. A 75 (2007) 042704) for ionization leaving the residual He+ ion in either the 1s ground state
or the n = 2 (2s+ 2p) excited states.
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It has been over a decade since one of the most funda-
mental problems in atomic collision physics, the ioniza-
tion of atomic hydrogen by electron impact, a so-called
(e,2e) process, was solved in a fully nonperturbative way
by Rescigno et al. [1] using the “exterior complex scaling”
(ECS) method. The very same problem was also solved,
to comparable accuracy, by the time-dependent close-
coupling (TDCC) [2] and the time-independent conver-
gent close-coupling (CCC) [3, 4] approaches. The ma-
jor difficulty in the treatment, namely the complicated
boundary conditions due to three free charged particles in
the final state, is effectively avoided in both the ECS and
TDCC formulations. In the CCC method, one first solves
an excitation problem with simpler boundary conditions
for the discrete (bound) pseudostates representing the
ionization continuum. In a second step, the correspond-
ing transition matrices are transformed to approximate
the ionization process. Many of the lessons learned in
describing the (e,2e) process for atomic hydrogen have
since been used also in the full break-up (double ioniza-
tion) of the He atom by photon impact, either in the
steady-state [4, 5] or the short-pulse regime [6, 7].

The natural extension of the three-body Coulomb
problem to a four-body case is electron impact of he-
lium, in which four charged particles (three electrons and
the nucleus) are involved. In this case, the situation is
much more complicated than in atomic hydrogen, due to
the significant electron-electron correlations already in
the initial bound state. Nevertheless, provided one elec-
tron remains in the ground (1s)2S state of the residual
He+ ion, this electron may, to a high degree of accuracy,
be treated as a spectator. With this simplification, the
CCC method has been very successful in describing the
corresponding (e,2e) processes as well [8, 9]. In fact, the
CCC predictions for the triple-differential cross section
(TDCS) for ionization without excitation [10] were be-
lieved to be sufficiently accurate that they were used [11]
– instead of measured data – to generate absolute the
cross sections for ionization with excitation to the n = 2
and n = 3 states of He+ from the experimentally deter-
mined cross-section ratios [12, 13] for ionization with and

without excitation.

To our knowledge, there has been no fully non-
perturbative theory available to date to treat in detail the
highly correlated ionization plus excitation process in he-
lium. This is the basic four-body Coulomb problem, even
though only two electrons are free in the final state while
the third one remains bound to the He2+ nucleus. Inter-
estingly, not even the total cross section (integrated over
the detection angles of both final-state continuum elec-
trons and the energy loss of the projectile) is currently
known to a satisfactory degree of accuracy (see [14] and
references therein for a detailed discussion). Although
Pindzola et al. [15] published total cross sections for three
energies from a TDCC model, the work was not pursued
to angle-differential observables. No ECS or CCC pre-
dictions of this process have been published either.

A partially successful theory for the ionization-
excitation process has been a hybrid approach, in which
the interaction of a “fast” projectile electron with the tar-
get is described by a first-order or second-order distorted-
wave approach, while the initial bound state and the
scattering of a “slow” ejected electron from the resid-
ual ion is treated by a convergent R-matrix with pseudo-
state (RMPS) expansion. These DWB1-RMPS [16] and
DWB2-RMPS [17] models were formulated for highly
asymmetric kinematics and small energy losses compared
to the incident energy. The method proved indeed ap-
plicable to such situations (see [18] as an example),
but it failed when these conditions were no longer ful-
filled [11, 13]. A four-body distorted wave method [19]
used asymptotically accurate wave functions, but it suf-
fered from serious shortcomings in the region where the
collision most likely occurs and, consequently, was unable
to reproduce the experimental data [11].

Given its success for electron ionization of atomic hy-
drogen and ionization without excitation of helium, the
close-coupling expansion has remained a promising can-
didate to tackle the ionization with excitation process.
In this Letter, we formulate the problem in the frame-
work of the B-spline R-matrix (BSR) approach [20].
This method has enjoyed significant success in the treat-
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ment of low-energy, near-threshold electron collisions
with complex atoms. Since a comprehensive list of publi-
cations is impossible, we refer to [21] as a recent example
and to [22–24] for applications to e-He collisions.
The key point of the method is the use of B-splines as

a universal and effectively complete basis to describe the
projectile electron in the close-coupling expansion of the
collision system. A distinctive feature of our BSR imple-
mentation is the possibility to employ individually op-
timized, and hence “nonorthogonal” orbitals to describe
the target states, and we do not restrict the projectile
orbitals to be orthogonal to the target orbitals either.
Although the lack of these restrictions makes the setting
up of the hamiltonian matrix significantly more compli-
cated than in the standard R-matrix approach [25], the
flexibility of the method has proven to be a critical ad-
vantage on many occasions.
In recent calculations [21–24], we already introduced

a few pseudostates in the BSR close-coupling expansion.
The principal purpose of these states, however, was to
further improve the target description and to represent
the contribution from the ionization continuum to such
physically important effects as the polarization of the tar-
get by the projectile. Here we extended this approach
substantially by including a large number of pseudostates
for a rigorous treatment of the target continuum. As a
result, we can now consider ionization processes as well.
Specifically, we are interested in the ionization of an

atom by electron impact, schematically written as

e0(k0, µ0) +A(L0,M0;S0,MS0
)

→ e1(k1, µ1) + e2(k2, µ2) +A+(Lf ,Mf ;Sf ,MSf
),

(1)

where the ki are the linear momenta of the incident, scat-
tered, and ejected electrons, respectively, and the µi are
their spin projections. Furthermore, L0, S0 and Lf , Sf

are the orbital and spin angular momenta of the ini-
tial (N+1)-electron atom and the residual N -electron
ion, with the corresponding magnetic quantum num-
bers M0,MS0

and Mf ,MSf
. Since we are using a non-

relativistic model, we can handle all spins and spin com-
ponents by Clebsch-Gordan coefficients. To simplify the
notation, we will omit these quantum numbers below.
For a complete description of this process, we need the

ionization amplitude

f(L0,M0, S0;k0 → Lf ,Mf , Sf ;k1,k2). (2)

In the continuum pseudostate approach [3], one begins
by replacing the true continuum orbitals of the ejected
electron by a square-integrable representation, usually
obtained by diagonalizing the target hamiltonian in an
appropriate basis. The total, angle-integrated ionization
cross section can then be obtained from the excitation
cross sections of the pseudostates. To obtain the more de-
tailed angle-differential cross sections, however, one needs

to first project the discrete pseudostate functions to the
true continuum functions at the proper ejected electron
energy and construct the ionization amplitude (2).
In our method, the atomic wave function describing the

(N+1)-electron system is expanded in terms of products
of the N -electron ionic states and radial functions for the
outer electron. For He (N=1) specifically, we use

Φ(LS) = A
∑

i,j

{ϕ(nili)P (nj lj)}
LS + φ(1s2). (3)

The operator A denotes the proper antisymmetrization.
It implies that the target function ϕ(nili) is coupled to
the outer electron represented by P (nj lj) through the
usual angular momentum rules for total orbital angu-
lar momentum L and spin S. In our case the functions
ϕ(nili) are the hydrogenic orbitals 1s, 2s, and 2p for He+.
In our approach, the radial functions

P (nj, lj) =
∑

k

bkjBk(r) (4)

are expanded in aB-spline basis. The vectors of unknown
expansion coefficients bj for each orbital are found by di-
agonalizing the target hamiltonian matrix inside a box
of radius a. These functions are forced to vanish at the
edge of the box. Note that the nonorthogonal orbital
technique implemented in our BSR code allows us to use
an independently optimized multi-configuration expan-
sion for the initial 1s2 state. We obtained an energy of
−2.90175 a.u. for this state.
As mentioned above, an important property of

B-splines is that they form an effectively complete ba-
sis over the interval spanned by the knot sequence. The
number of physical states that we can generate depends
on the radius of the box. Along with the physical states,
the scheme provides a set of pseudostates that represent
the Rydberg spectrum and the continuum. We chose
a = 15 a0 (where a0 = 0.529×10−10m is the Bohr radius)
and used 44 B-splines of order 8 on a semi-exponential
grid of knots. This resulted in 525 physical and pseudo
target states that covered the energy region up to 300 eV
with S, P , D, and F symmetries. The set of pseudostates
contained the configurations 1sn1l1, 2sn2l2, and 2pn3l3,
with the latter two sets describing doubly-excited auto-
ionizing states and the ionization-excitation process.
We then obtained the scattering amplitudes for exci-

tation of all pseudostates using our BSR complex [20]
for electron collisions. Contributions from all (N+2)-
electron symmetries with total orbital angular momen-
tum ≤ 25 were included in the partial-wave expansion.
The present model contained up to 1303 one-electron
scattering channels, leading to generalized eigenvalue
problems with matrix dimension up to 80000 in the B-
spline basis. The corresponding solutions were obtained
with a newly developed parallelized MPI version of the
BSR complex.
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The last, and most crucial step in the process, is the
generation of the ionization amplitudes (2). This is done
by summing up the amplitudes for excitation of all the
energetically accessible pseudostates (index p in Eq. (5)
below), with the expansion factors given by the over-
lap of the pseudostates and the true continuum function.
Specifically, we calculate

f(L0,M0, S0;k0 → Lf ,Mf , Sf ;k1,k2) =∑

p

〈Ψk2
−

f |Φ(LpSp)〉 f(L0,M0, S0;k0 → Lp,Mp, Sp;k1p).

(5)

Here the function Ψk2
−

f is the close-coupling solution of

the e−He+ collision problem with the boundary condi-
tion of incoming waves in all channels and an outgoing
wave in the channels represented by the ionic state with
quantum numbers Lf , Mf , and Sf , respectively.

Note that Ψk2
−

f and Φ(LpSp) have different energies
for the continuum electron represented by k2 and the
electron in the pseudostate. Due to energy conservation,
excitation of Φ(LpSp) leads to k1p 6= k1 for the projec-
tile. While interpolating the transition-matrix elements
works well for the single-channel case [3], our direct pro-
jection method is necessary to maintain the crucial chan-
nel information in multi-channel situations. This makes
Eq. (5), which is the generalization of Eq. (15) of [8]
for multi-channel cases, a suitable approximation for the
true ionization amplitude. More details will be given in
a separate publication.
The TDCS for He can be written as

dσf

dE1(2)dΩ1dΩ2
=

k1k2
k0

∑

Mf

|f(Mf ;k1,k2)|
2, (6)

where we have simplified the notation of the ampli-
tude (5) by omitting k0 as well as the quantum num-
bers L0 = M0 = S0 = 0 and Sf = 1/2. We emphasize
that the primary and the ejected electron are not treated
symmetrically in the pseudostate approach. For compar-
ison with experiment, therefore, we should also consider
the ionization process, in which the primary electron has
the final momentum k2 while the ejected electron has
momentum k1. Since the two processes cannot be distin-
guished, the corresponding amplitudes should be added
coherently. For details, including spin-related factors,
see [9].
As a first test of our method, Fig. 1 exhibits the TDCS

for electron impact ionization of helium in its (1s2)1S
ground with the residual ion left in the He+(1s)2S state.
The primary energyE0 is 112.6 eV and the two final-state
electrons both have energies of 44.0 eV. Comparing the
present BSR results with the predictions from the CCC
and the hybrid DWB2-RMPS approaches [11], we find
overall good agreement between CCC and BSR regarding
the shape of the TDCS for all four scattering angles for
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FIG. 1. (Color online) TDCS for electron impact ionization
of helium in its (1s2)1S ground with the residual ion left in
the He+(1s)2S state. The primary energy E0 is 112.6 eV and
both final-state electrons have energies of 44.0 eV.

which results are available. The discrepancies between
the CCC and BSR absolute values (up to 30%) are most
likely due to the different descriptions of the initial bound
state. We use a multi-core multi-configuration expansion
while the CCC calculations were performed in the frozen-
core approximation with one electron fixed in the He+ 1s
orbital. The DWB2-RMPS approach shows significant
problems for the symmetric energy sharing case in gen-
eral, but particularly for the largest detection angle of
the reference electron.

The most significant finding of the present work is pre-
sented in Fig. 2, where we compare the BSR and DWB2-
RMPS predictions with the directly measured experi-
mental cross-section ratios [13] for ionization without ex-
citation (leaving the electron in He+ in the 1s state) and
ionization with excitation to He+ (2s+ 2p). The agree-
ment between the BSR results and the experimental data
is excellent at all angles of the reference electron between
24◦ and 56◦, and all detection angles of the other electron
between 25◦ and 115◦. As expected, the hybrid approach
is inappropriate for large angles of the fixed electron.

We have presented an entirely nonperturbative treat-
ment of the Coulomb four-body problem, as it appears in
ionization and particularly ionization with excitation of
helium by electron impact. Our formulation is based on
the ideas of treating such processes within the framework
of the close-coupling expansion. After mapping the am-
plitudes for ionization of doubly-excited pseudostates to
the ionization continuum with only one of the two elec-
trons remaining bound in the residual ion, we obtained
excellent agreement between our numerical results and
directly measured cross-section ratios.

We plan to perform a number of additional calcula-
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FIG. 2. (Color online) TDCS ratio for electron impact ion-
ization of helium in its (1s2)1S ground with the residual ion
left in either the He+(1s)2S state or the excited He+(n = 2)
states. The primary energy E0 is either 112.6 eV (n = 1) or
153.4 eV (n = 2) and both final-state electrons have energies
of 44.0 eV. The experimental data of Bellm et al. [13] are
compared with the present BSR results and with predictions
from the hybrid DWB2-RMPS approach.

tions for the (e,2e) process in helium, especially extend-
ing our initial tests to asymmetric kinematics. As shown
in Fig. 3, our first results are very encouraging and show
similarly good agreement with the very recent absolute
experimental data as the CCC predictions [26]. Where
differences remain, the available data do not allow for an
unambiguous judgment of which theory might be closer
in the gaps where measurements are missing.

Most importantly, however, we are already in a posi-
tion to move towards more complex targets, particularly
Ne and Ar. Many experimental data exist for these sys-
tems. While (partially) perturbative theories have had
some success and the CCC method has been used for
the ionization of s electrons in a frozen-core model, the-
ory has overall been unable to systematically reproduce
these data to an acceptable degree of accuracy (see, for
example, [27]). We expect to change this situation in the
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FIG. 3. (Color online) TDCS for electron impact ionization
of helium in its (1s2)1S ground with the residual ion left in
the He+(1s)2S state. The primary energy E0 is 70.6 eV, and
the final-state electrons have energies of 41.0 eV and 5.0 eV.
The experimental data for the co-planar and perpendicular
geometries, as well as the CCC and TDCC predictions, are
excerpts from Fig. 2 of [26].

near future.
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