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Recent experiments on the shear viscosity η in a unitary Fermi gas fail to see the theoretically
predicted upturn in η at the lower T . In this paper we compute η in a fashion which is demonstrably
consistent with conservation laws and, in the process, provide an understanding of recent experi-
ments. We show that this disagreement with prior theories cannot be readily attributed to the trap,
since (via edge effects) trap-averaged viscosities will be larger than their homogeneous counterparts.
The small values of η we find can be simply understood; they reflect the fact that the Goldstone
bosons (phonons) do not couple to transverse probes such as η, and fermionic excitations, which
determine the viscosity are necessarily absent in the ground state.

PACS numbers: 03.75.Ss,67.10.Jn, 67.85.De

One of the most exciting aspects of ultracold Fermi
gas experiments near the unitary limit is their strong
connection to other physics sub-disciplines. The notion
of a “near-perfect fluid”, observed in the cold gases is
of great interest to physicists working on black holes, on
RHIC physics and on quark-gluon plasmas, all of which
exhibit anomalously low shear viscosities η [1]. As has
been argued in the literature [1], the shear viscosity is an
important diagnostic of the nature of microscopic theo-
ries. For the relativistic case, much attention has focused
on calculations of the shear viscosity which build on the
AdS/CFT conjecture [2]. Moreover, because η is asso-
ciated with anomalously short mean free paths, it has
been claimed [1] that many alternative approaches such
as “kinetic theory estimates and perturbative computa-
tional techniques are doomed to fail”.

For the non-relativistic cold Fermi gases, considerable
insight concerning thermodynamics and the theory be-
hind various spectroscopic probes has been obtained by
extending the formalism of BCS to accomodate arbitrar-
ily strong interactions. In this paper we use this BCS
to Bose Einstein condensation (BEC) crossover scheme
to address the observed anomalously low viscosity in
trapped Fermi gases. Our aim is to build on a signifi-
cant body of literature which has yielded an understand-
ing of the superfluid shear viscosity (η) [3, 4] in BCS-
based systems such as helium-3. Historically, BCS trans-
port theory was validated only after [5] a clarification
was presented of the role of Goldstone bosons in leading
to gauge invariance and conservation laws. Among the
most persuasive checks one has of a given many body
theory is consistency with sum rules which reflect con-
servation laws. In strict BCS theory these sum rules are
easily established. Goldstone boson effects are shown to
be absent in transverse response functions, so that sum

rules are satisfied without their inclusion. The challenge,
however, in extending BCS theory is that, because of
the stronger-than-BCS attraction, one must include both
fermionic and “bosonic” excitations of the condensate as
well as of the normal, above Tc phase [6]. These bosons
are associated principally with non-condensed pair de-
grees of freedom.

Our goals in this paper are (1) to outline this promis-
ing new formalism for addressing η which is fully con-
sistent with sum rules [7]. (2) To address experimen-
tal data (some of which [8] appeared after these predic-
tions) where there are important differences with other
homogeneous theories in the literature. (3) To extract
important information about the nature of the excita-
tion spectrum (phononic versus fermionic) which strongly
constrains microscopic theories of the unitary gas. We
also address trap effects and show, as expected, that the
trap-integrated viscosity will be artificially higher than
for the homogeneous case, since η will be dominated by
unpaired fermions at the trap edge. Our theory and ex-
periments [8] show that η is monotonically decreasing
with T → 0, but we find that η/s appears to be rela-
tively T independent at the lower temperatures. Thus
we cannot rule out its upturn due to trap effects. After
this paper was submitted we learned of nearly simulta-
neous work [9] which predicts that both the viscosity and
the ratio η/s of the unitary gas necessarily exhibit a min-
imum, somewhat below Tc.

The shear viscosity may be one of the most important
clues to our ultimate microscopic understanding of uni-
tary gases and BCS-BEC crossover in general. This is
because it reflects the normal fluid component (or exci-
tation spectrum) in a very direct way. While thermody-
namic probes do reflect the excitations, this is only in
the form of power laws which are less susceptible to easy
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analysis for a trapped configuration. In a low T normal
Fermi liquid phase with scattering lifetime γ−1 and ef-
fective mass m∗, η = 1

5nv
2
F γ

−1m∗. More generally, one
can think of η as characterized by the effective number
of the normal excitations (n → neff (T )) as well as their
lifetime which we emphasize here is a many body effect.
Crucial is an understanding of how neff depends on T .
Previous BCS-based work [3, 4] allows us to antici-

pate our simple physical picture. There is no coupling to
Goldstone bosons (phonons) in a transverse probe (such
as η or the conductivity [10]) and there are no fermionic
(or bosonic) excitations at low T ; hence η should vanish
near the ground state. Indeed, in the superfluid phase of
helium-3 [11] η drops off rapidly to zero. In the helium-4
counterpart, the single particle bosonic excitations cou-
ple to the collective (Nambu-Goldstone) modes, leading
to an upturn [12] in η at low T , which has also been pre-
dicted (but not seen) for the atomic Fermi superfluids
[9, 13]. In past literature there has been a focus on ei-
ther the fermionic [14] or bosonic [13] constituents of the
unitary gas, Our Kubo-based formalism readily accomo-
dates the simultaneous bosonic and fermionic contribu-
tions and thereby addresses neff as well as the lifetime
(through interconversion of bosons and fermions); this
Kubo approach includes scattering processes via the life-
times [15] which appear in the various Green’s functions
and vertex diagrams.
We stress that, although there is disagreement in the

literature [9, 13], our qualitative results for η are straight-
forward and should be rather generic. The only subtle
feature is the role of the non-condensed boson contribu-
tions; here we appeal to consistency with the transverse
sum rule to support our theoretical approach. A central
conclusion is that both the effects of a fermionic gap (with
onset temperature T ∗ > Tc) and the non-condensed pairs
act in concert to reduce neff and thus lower the shear
viscosity at all T < T ∗. When compared with very recent
shear viscosity experiments [8] (we independently infer
[16] an estimated lifetime from radio frequency data) this
lends further support to our microscopic starting point.
We compute viscosities using the more well controlled

current-current correlation functions [7], χ↔JJ rather than
stress-tensor correlation functions, via

η = −m2 lim
ω→0

lim
q→0

ω

q2
ImχT (ω,q)

which is importantly constrained by the sum rule [7]

lim
q→0

∫ ∞

−∞

dω

π

(

−
ImχT (ω,q)

ω

)

=
nn(T )

m
, (1)

The transverse susceptibility χT = (
∑z

α=x χ
αα
JJ − χL)/2

with the longitudinal χL = q̂ · χ↔JJ · q̂. Here nn(T ) cor-
responds to the number of particles in the normal fluid
and nn(T ) → n above Tc, where n is the total parti-
cle number. The current-current correlation function is

χ
↔

JJ = P
↔

+ n↔

m + CJ , where CJ is known [17, 18] and
associated with the collective modes. These latter are
unimportant for the transverse response. The quantity

P
↔

which represents the paramagnetic current, is of cen-
tral interest in this paper.

Because dissipative transport in BCS-BEC theory is
complex, among the most persuasive checks on a proper
characterization of the “normal fluid” is consistency with
sum rules. By the same token, because it is more diffi-
cult to precisely enforce the counterpart longitudinal sum
rule, which also involves Goldstone boson effects, in this
paper we do not discuss the bulk viscosity. We note that
Eq. (1) is more general and fundamental than sum rules
derived in Ref. [19].

Our theoretical scheme is based on the BCS-Leggett
ground state, extended [20] to non-zero temperature T .
A detailed discussion of the basis for the transport stud-
ies here can be found in Ref.10, 17, 18, 20, where the
closely-related conductivity and other transport is dis-
cussed. For this reason we do not repeat the details.
There are two contributions to the square of the pairing
gap ∆2(T ) = ∆2

sc(T ) + ∆2
pg(T ), corresponding to con-

densed (sc) and to non-condensed (pg) pairs, which are
associated with a pseudogap. The fermions have disper-

sion Ep ≡

√

ξ2
p
+∆2(T ), where ξp = ǫp − µ (In what

follows, we omit the subscript p for convenience).

Consistency in linear response theory is based on the
use of Ward identities which connect transport to the
fermionic self energy. Here we adopt the literature stan-

dard for the self energy in T > Tc theories of the cuprate
pseudogap [21]

Σ(p, ω) ≡ −iγ +
∆2

pg

ω + ξp + iγ
+

∆2
sc

ω + ξp + i0+
. (2)

The condensed pairs have the usual BCS self energy con-
tribution, Σsc, while the self energy of the non-condensed
pairs Σpg contains an additional damping term param-
eterized by γ. In the cold gases, this temperature de-
pendent many body lifetime associated with pair-fermion
inter-conversion can be partially quantified by Radio Fre-
quency (RF) “photoemission” experiments [22, 23] for
40K. In 6Li, where the viscosity experiments are per-
formed [8, 24, 25], we have previously estimated [16] this
parameter by fitting non-momentum-resolved RF exper-
iments.

To keep the equations simple and transparent we pro-
ceed in two stages. The diagram set which satisfies
Eq.(1), includes [10, 17, 18, 20], both Maki Thompson
(MT) and two Aslamazov-Larkin (AL) diagrams. We
begin in the weak dissipation limit, by which we mean
the lifetime of the fermionic excitations is very long, so
that to leading order we may set γ ≈ 0+ in Eq.(2). In
this weak dissipation limit [17, 18, 20] one can write more
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Figure 1: (Color online) (a) Calculated (homogeneous) viscos-
ity η = n~α for a unitary gas, illustrating robustness under
changes in the value of the lifetime 1/γ. The color coded
lifetimes (in units E−1

F
) indicated in the inset correspond to

their counterparts in the main figure. Here 1/γ is deduced
from fits to RF experiments (black squares) and both linear
(red) and quadratic (blue) dependences on T/Tc. (b) Contri-
butions to α (net total = thick black curve) from condensed
and non-condensed pairs (shaded) and from the simple bub-
ble diagram (dashed). Inset plots the effective carrier number
as ∝ ηγ, showing the decrease relative to high T .

simply

P
↔

(ω,q) =
∑

p

pp

m2

[E+ + E−

E+E−

(

1− f+ − f−
)

×
E+E− − ξ+ξ− − δ∆2

ω2 − (E+ + E−)2
−

E+ − E−

E+E−

×
(

f+ − f−
)E+E− + ξ+ξ− + δ∆2

ω2 − (E+ − E−)2

]

, (3)

where ~ = 1, E± = Ep±q/2, the Fermi functions, f± =
f(E±) and δ∆2 = ∆2

sc − ∆2
pg. If we now take the low

ω, q limits, η assumes a form similar to a stress tensor
correlation function. We incorporate lifetime effects [15]
(which preserve the analytic sum rule consistency) by

writing δ(ω ± q · ∇pE) = limγ→0

1
π
γ

(ω±q·∇pE)2+γ2 .

Importantly, a rather simple expression for the shear
viscosity emerges:

η =

∫ ∞

0

dp
p6

15π2m2

E2
−∆2

pg

E2

ξ2

E2

(

−
∂f

∂E

) 1

γ
(4)

From Eq.(4) one can identify the effective carrier number
(neff (T ) ∝ ηγ) discussed in the introduction, and verify
that it is dramatically suppressed at low T . Equation (4)
which is our central result, is a generally familiar BCS
expression [3, 4] except for the effects associated with
the non-condensed pairs. These appear via non-zero ∆pg

which enters as a prefactor 1−
∆2

pg

E2 . This deviation from
unity can be traced to the AL diagrams.
The fact that the non-condensed pairs suppress η is

a very important observation which comes physically
from the fact that when pairs are present there are
fewer fermions to contribute to the viscosity. In the
weak dissipation limit, we can analytically prove this

sum rule for the transverse susceptibility (Eq.(1)). We
note that the total number of particles can be written
as n =

∑

p

(

1 −
ξ
E (1 − 2f)

)

. The superfluid density at
general temperatures is given by ns = mReP xx(0, 0) +

n = 2
3
∆2

sc

m

∑

p

p2

E2

(

1−2f
2E + ∂f

∂E

)

. Thus from Eq.(3),

the left hand side of Eq.(1) is
∑

p

p2

6m2

[

2∆2
pg

E2

1−2f
E −

4
E2

−∆2
pg

E2

∂f
∂E

]

= n−ns

m = nn

m , thereby proving the sum

rule. What is essential here is a validation that we have
included the effects of non-condensed pairs in a consistent
fashion.

Importantly, the expression in Eq.(4) can be general-
ized to the stronger dissipation limit [10], by introducing
generalized Green’s functions which represent the vari-
ous pg and sc contributions. [See Supplementary ma-
terial]. We stress that calculations based on the strong
dissipation approach [10] show very little difference from
those obtained using the weak dissipation scheme. This
is principally due to nodeless s-wave pairing gap and the
inferred size of γ. While one could argue that this one
parameter (chosen independently of viscosity measure-
ments) makes the theory less compelling, we stress that
the qualitative disagreement between alternate theories
[9, 13] of η is so vast that at this stage it makes little
sense to assess any theory by the flexibility of a single
parameter.

In Figure 1(a) we plot the shear viscosity for a unitary
gas as computed via the strong dissipation approach. We
have verified that the results are similar if we use the sim-
pler form of Eq.(4) directly. The plot is for α defined as
η ≡ αn~ versus temperature for a homogeneous system
at unitarity and for a range of different lifetime param-
eterizations. The inset to Figure 1(a) presents a plot of
the RF-deduced lifetime as black squares along with a few
alternative functional forms. Each of these corresponds
(via color coding) to the plots for α in the main body of
the figure. In all cases α drops to zero at low tempera-
tures, although one can see that this is slightly countered
by the fact that the fermions are longer lived at low T .
This figure should make it clear that the behavior shown
here is quite independent of any detailed models for the
inverse lifetime γ−1. This largely follows from the intu-
ition already embedded in Eq.(4) showing the dominant
effect is due to an exponential decrease in the number of
condensate excitations associated with s-wave pairing.

In the inset of Figure 1(b) we plot the effective carrier
number defined as ∝ ηγ as a function of T . The curve,
normalized to the high temperature value where ∆ = 0,
shows a clear suppression of the carrier number which is
associated with the non-condensed pairs. The main body
of the figure presents a breakdown of the various contri-
butions to the viscosity coming from this bubble term
and from the contributions of condensed (proportional
to ∆2

sc) and non-condensed (proportional to ∆2
pg) pairs.

We turn now to calculations in a trap based on the
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Figure 2: (Color online) (a) Comparison of shear viscosity
η ≡ αn~ and experiments [25] (red triangles) at unitarity
for a trapped gas. In theory plots (black dots) we use the
calculated thermodynamics for the trap energy E and entropy
density s. From bottom to top, the inset in (a) plots the shear
viscosity profile (divided by lifetime) at T/TF = 0.15, 0.20,
0.25 and 0.30. The edges of the superfluid core are labeled
by black solid lines. (b) Comparison of η/s. The blue dashed
line labels the quantum lower limit of η/s given by Ref. [2].

local density approximation. Our calculations incorpo-
rate the same trap averaging procedure as used Ref. [25].
Here we have used the calculated trap thermodynamics
[26] to rescale the various axes. The inset to Figure 2(a)
presents the shear viscosity profile in the trap (divided
by lifetime τη where τη = 1/γ) at different global trap
temperatures for a unitary Fermi gas. This figure shows
that the superfluid core contribution to η is considerably
smaller than that of the normal cloud at the trap edge.
The main body of Figure 2(a) presents a comparison of
the viscosity coefficient α between theory (based on the
RF-deduced lifetime), as black dots, and experiment [25]
(red triangles) as a function of E. When comparing with
the homogeneous calculations of Fig. 1, these plots indi-
cate a fairly substantial increase in η from trap effects,
simply due to the non-superfluid fermions at the trap
edge. Since other (homogeneous) theories find an over-
estimate of η at low T , relative to experiments, we con-
clude that including the trap, in their approaches would
lead to less, not more, consistency with experiment. Fig-
ure 2 (b) shows the comparison of η/s where s is the en-
tropy density. It can be seen that our calculations show
a reasonable understanding of these data [25].
There appear to be no other BCS-BEC based calcula-

tions of η in the literature which address the entire range
of T below Tc and also the consistency check of Eq.(1).
Bruun and Smith [14] have studied the above Tc shear
viscosity and importantly recognized [14] that the pseu-
dogap reduces η. However, the diagram set which was
used was “not conserving”[14]. Rupak and Schafer [13]
argued that η is dominated by the Goldstone bosons or
phonons and predicted an upturn at the lowest T in both
η and η/s. It has to be stressed, however, that in BCS-
based fermionic superfluids the Goldstone bosons do not
couple to a transverse response such as η. They similarly
do not couple to the conductivity [10] or to the spin re-

sponse [18]. If other modes of low energy excitation (such
as phonons) are to be introduced then one must estab-
lish that these are consistent with the appropriate sum
rules. This paper has established the rather subtle role
of the non-condensed bosons (which disappear at T = 0)
and which are seen to lower η. It has also shown that the
viscosity of the superfluid unitary gas may be less similar
to helium-4, than to helium-3.
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