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Universal logarithmic terms in the entanglement entropy appear at quantum critical points
(QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D con-
formal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained
via the “Shannon entropy” of a 1D spin chain with open boundary conditions. The Shannon entropy
of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice
quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the
Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D
Ising conformal QCP, is found to have a singular dependence on replica or Rényi index resulting
from flows to different boundary conditions at the entanglement cut.

PACS numbers: 05.30.Rt, 03.67.Mn, 75.10.Pq

The use of quantum information concepts to under-
stand many-particle systems near a quantum critical
point (QCP) has grown rapidly since the 1994 calcula-
tion of entanglement entropy in one-dimensional (1D)
critical systems [1]. Entanglement entropy shows a uni-
versal logarithmic divergence at 1D critical points de-
scribed by 2D conformal field theories (CFTs) [2] and at
infinite-randomness 1D critical points [3]. Recent work
has studied generalizations to Rényi entropy and the en-
tanglement spectrum [4]. Terms proportional to logL for
a subsystem of size L in an infinite background are es-
pecially important as their coefficients are independent
of the microscopic lattice spacing and hence potentially
universal. Entanglement can be used to develop a classi-
fication of 1D interacting quantum systems [5] and deter-
mines the difficulty of numerical simulation of 1D QCPs
via matrix product state methods [6].

Above one spatial dimension, there are few general
results on critical entanglement entropy. For critical
points described by a d + 1-dimensional CFT there is
a conjecture for some geometries from the AdS/CFT
correspondence [7] for the powers of length that appear
in the entanglement entropy: logarithmic terms appear
generically only in odd spatial dimensions. This conjec-
ture agrees with 1D results, as well as perturbation the-
ory [8] and variational methods [9] above 1D. For another
class of systems, “conformal quantum critical points”
(CQCPs) in d = 2 [10], whose ground state wavefunc-
tions are related to 2D rather than 3D CFT’s, nonper-
turbative analytical and numerical results are possible
and are the focus of the present work. An example of
a CQCP is the critical state of the square lattice quan-
tum dimer model [11] originally introduced as a model
for high-temperature superconductors.

We investigate logarithmic terms in the von Neumann
entropy S and Rényi entropies Sn for CQCPs associated
with the compact boson (which has CFT central charge
c = 1) and the Ising model (c = 1/2). One result is

the first explicit observation of a universal entanglement
entropy logarithm above 1D. For the c = 1 boson, the
results confirm a conjecture from the initial study of en-
tanglement at CQCPs [12], which derived a formula for
a universal, geometry-dependent logarithmic correction
to the leading area law. Recent work [13–15] on order-
unity (O(1)) terms called into question the validity of
that formula as for the O(1) terms there are subtle issues
related to compactification that took several years and
several groups to resolve. We give an improved derivation
in supplementary material explaining why subtle factors
affecting the O(1) terms are irrelevant for the logarithm.

However, for the Ising CFT we find that the coeffi-
cient of the logarithm is discontinuous as the Rényi in-
dex n passes through n = 1. We explain this behav-
ior analytically by arguing that the correct “defect line”
used in the calculation of the entropy changes discon-
tinuously with n and is not the combination of one free
field and n − 1 Dirichlet fields as conjectured in Ref. 12
and confirmed for the boson. A similar but less singular
discontinuity in n was previously found numerically to
exist for the O(1) term [16]. Our numerical approach to
logarithmic terms uses large-scale Time-Evolving Block
Decimation (TEBD) [17] calculations to implement the
same mapping used there between entanglement entropy
at 2D CQCPs and the Shannon entropy of 1D spin chains.
The compact boson case relevant to the quantum dimer
model seems to be well understood, but the results here
demonstrate that the correct defect boundary condition
can be complicated and n-dependent.

We first define some basic concepts. The bipartite
entanglement spectrum {pσ} of a pure quantum state
consists of the eigenvalues of the reduced density matrix
of either subsystem. The von Neumann entropy S and
Rényi entropies Sn are defined by

S = −
∑
{σ}

pσ log pσ, Sn =
1

1− n
log(

∑
{σ}

pnσ). (1)
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FIG. 1. a) The entanglement spectrum of the CQCP, pσ, in a
strip geometry is in one-to-one correspondence with field con-
figurations {σ} on the entanglement cut. These probabilities
can be alternately understood as b), partition functions for
a constrained CFT in the strip geometry, or c), ground state
amplitudes of a quantum chain.

The entanglement spectrum {pσ} of a CQCP ground
state in strip or cylinder geometries can be understood
both in terms of the associated 2D CFT or as proba-
bility amplitudes of a 1+1D spin chain, as illustrated in
Fig. 1. The entanglement spectrum {pσ} is in one-to-
one correspondence with CFT field configurations {σ}
along the entanglement cut. If the CQCP lies on a strip
or cylinder, the 2D CFT naturally defines a 1D quan-
tum Hamiltonian H via the transfer matrix formalism.
‘Time’ is chosen parallel to the strip (cylinder), with the
entanglement cut at a fixed time τ = 0. For universal
properties, we can take the spatial direction to lie on a
lattice. In the limit of an infinite strip the ground state
probabilities are identical to the entanglement spectrum
of the associated CQCP [13]. The Shannon entropy of
the spin chain, defined as in Eq. (1) with pσ = |〈σ|0〉|2,
is a basis dependent measure of disorder in the ground
state. The Shannon entropy of the spin chain is then
equivalent to the bipartite von Neumann entropy of the
CQCP.

The relationship between the CQCP entanglement
spectrum, spin chain ground state probabilities, and CFT
partition function is summarized by

pσ = lim
β→∞

〈i| e−βH |σ〉 〈σ| e−βH |i〉
〈i| e−2βH |i〉

= | 〈σ | 0〉 |2 (2)

= lim
m→∞

〈i| T m |σ〉 〈σ| T m |i〉
〈i| T 2m |i〉

=
e−F [{σ}]

e−F
. (3)

Here T is the transfer matrix of the CFT, and the re-
sult is independent of the boundary state |i〉 in the limit
of an infinite strip. With a basis {σ} for the Shannon
entropy, the projection operator |σ〉 〈σ| in the numerator
of Eq. (3) constrains the corresponding field of the CFT
along a cut at τ = 0; the bulk fields remain free. The
numerator and denominator are thus constrained and un-
constrained partition functions, with free energies F [{σ}]

and F respectively.
The Rényi entropies Sn suggest a thermodynamic no-

tation

Z(n) = e−F (n) ≡
∑
{σ}

pnσ =
∑
{σ}

e−n(F [{σ}]−F ), (4)

defined so that F (n) = (n−1)Sn. The ‘free energy’ F (n)
is found to depend on the length of the chain L as

F (n,L) = f1(n)L+ γ(n) log(L/a) + f0(n) + · · · . (5)

At a critical point γ(n) should be universal and deter-
mined by the CFT as it is independent of the UV cutoff
1/a. In the case of a cylinder geometry, γ(n) is zero for
an arbitrary CFT as the trace anomaly from a smooth
conformal defect line is zero. For a strip geometry, a uni-
versal logarithmic term is expected as explained below.

For integer n, Z(n) can be interpreted as the partition
function of a replicated CFT with n copies of the field
constrained to agree along τ = 0, normalized by the free
partition function. F (n) is then interpreted as the free
energy of a defect line in the replicated CFT. If the loga-
rithmic contributions can be calculated in the replicated
CFT and analytically continued to n = 1, then the entire
spectrum of Rényi entropies Sn as well as S is known, via
S = ∂nF (n)|n=1. (Below, this ‘replica trick’ is found to
fail for the Ising model due to non-analyticity of F (n) at
n = 1 in the thermodynamic limit.)

We start with numerical evidence for the existence of
logarithmic terms in the case of the c = 1 compact boson,
the CFT associated with the CQCP of the square-lattice
quantum dimer model. For a free boson, Ref. 12 pre-
dicted a contribution − 1

4 log(L) ∈ S in the strip geome-
try; we indeed find a logarithm − 1

4 log(L) for the external
boundary conditions (on the edge of the strip) assumed
there, and for an alternate boundary condition we obtain
+ 1

4 log(L) as derived below. By using the transfer matrix
mapping, it is sufficient to calculate the Shannon entropy
of a 1D quantum model, the spin-1/2 XXZ chain

H = −h(σx1 + σxL) +

L−1∑
i=1

[
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

]
.

(6)
In the continuum limit the XXZ model is described by a
compact boson. The boundary conditions are tuned by
an external field h on the surface sites, and the Shannon
entropy is calculated using the σz basis.

The ground state was found by TEBD for L =
{2, 4, · · · , 30} at ∆ = {− 1

2 , 0,
1
4 ,

1
2 ,

3
4}. We estimate the

ground state error to be of order ε = 1 − | 〈0 | Ψ〉 |2 ∼
O(10−6), which was verified for the exactly solved ∆ = 0
case. The partition function Z(n) was then computed
by summing over all 2L configurations. The logarithmic
contribution γ(n) was extracted from the finite-size data
as described in Fig. 2a. γ(n) is well described by

γ(n) = ∓1

4
(n− 1) (7)
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FIG. 2. a) The logarithmic part of F (n) at ∆ = −1/2. Data
is included both without (h = 0) and with (h > 0) an edge
magnetic field. F (n,L) was computed for L = 2, 4, · · · 30.
Windows of 6 data points centered at `, L = {`−5, · · · , `+5},
were fitted to the form f1L+γ log(L)+f0+f−1L

−1. The data
displayed includes γ for ` = {9, 23}. The approach of γ(n) to
the dashed lines suggests convergence to γ(n) = ∓ 1

4
(n − 1)

as ` → ∞, for h = 0 and h > 0 respectively. The inclusion
of a L−1 term accelerates convergence, but the value of γ(n)
remains insensitive to within a few percent to the choice of
fitting form for terms that vanish as L→∞, as discussed in
the supplementary material. b) The logarithmic contribution
to the von Neumann entropy S(L), as a function of the fitting
window center `. As ` increases, the logarithm’s coefficient
converges to ∓1/4, depending on the boundary conditions.
Successive lines are for ∆ = {−1/2, 0, 1/2}.

for h = 0 and h > 0 boundary conditions respectively.
For the compact free boson, Eq. (7) is correct for all n,
while for XXZ and dimer lattice realizations, the result is
modified in the regime n ≥ 2 due to additional boundary
operators becoming relevant [18].

The slope of γ(n) at n = 1 is of special interest as the
von Neumann entropy is given by S = ∂nF (n)|n=1 if the
derivative exists. In the case of the XXZ model, there is
a logarithmic contribution ∂nγ(n)|n=1 = ∓ 1

4 , so the von
Neumann entropy scales as

S(L) = s1 · L∓
1

4
log(L/a) + · · · . (8)

The rapid convergence of S(L) to Eq. (8) with increasing
L is illustrated in Fig. 2b.

To derive Eq. (7), we perform a Jordan-Wigner trans-
formation on the XXZ spin chain and bosonize the re-
sulting fermionic model. The model is mapped onto the
universality class of a free, compact boson φ for |∆| < 1,
with a compactification radius R that depends on ∆. For
h = 0 the external boundary condition (b.c.) is Dirich-
let in the continuum limit, φ = 0, while for h 6= 0 the
external b.c. is Neumann, ∂xφ = 0 [19]. The resulting
change in the logarithmic contribution is thus attributed
to ‘boundary condition changing operators’ (bcc opera-
tors) in the underlying CFT. For integer n, the repli-
cated theory contains n copies of the field, φa, subject

to the constraint φa = φb along the τ = 0 cut, modulo
compactification. In the analogous problem for a non-
compact boson, the action, external b.c.’s, and path in-
tegral measure are all invariant under an O(n) rotation
of the replica index, so we can rotate the replicated fields
to a new basis which includes the ‘center of mass’ field
φCM = 1√

n

∑n
a=1 φ

a. The gluing condition now factor-

izes, giving the free center of mass field plus (n − 1) de-
coupled fields satisfying Dirichlet b.c. on the cut 12. The
free energy is

F (n) = (n− 1)(FD − F ) (9)

where FD is the free energy of a single replica with Dirich-
let b.c. on the cut and F is the unconstrained free energy.
Using this rotation, the logarithmic contribution to F (n)
follows from the free energies FD and F of a single replica.

Logarithmic contributions to the free energy of a CFT
arise from a ‘trace anomaly,’ in which the trace of the
stress tensor

〈
Tµµ
〉

does not vanish. In the relevant ‘cut
strip’ geometry, the anomaly arises from the four corners
where the cut along τ = 0 terminates into the exter-
nal boundary, as illustrated in Fig. 1a. The geometry of
the corner contributes a term proportional to the central
charge c [20]. However, there can also be a contribution
due to the changing b.c.: if the external b.c. is Neumann,
then termination of the Dirichlet b.c. on the cut into the
external Neumann b.c. introduces a bcc operator [21].
The scaling dimension of this bcc operator, hND, will
appear as an extra contribution to the trace anomaly.

For an arbitrary CFT in the ‘cut strip’ geometry the
predicted coefficient of the logarithmic term is

L∂L(Fc − F ) = 2× 2
[
2hec −

c

16

]
. (10)

F is the free energy of the strip with no constraint at
τ = 0, while Fc is the free energy when constrained to
some b.c. ‘c’ along the cut, and both obey external b.c.
‘e’. Here hec is the scaling dimension of the bcc operator
required to take the external b.c. e to the b.c. c on the
cut. This result can be extended if e.g. the cut is not
perpendicular to the boundary. In the compact boson
case, c = 1, and the scaling dimension heD is 0 or 1/16
for e = D,N respectively. Substituting into Eq. (10),
L∂L(FD − F ) = ∓ 1

4 for D/N respectively, i.e., the sign
of the logarithmic term depends on the external b.c. The
XXZ results are well described by the rotation trick and
this bcc operator effect. It can be shown (supplementary
material) that the logarithm is unaffected by compact-
ification, as supported by the XXZ data. Briefly, field
configurations can be decomposed into two sectors: fluc-
tuations versus zero modes or vortices. Only the latter,
topological sector is affected by compactification. The
fluctuating sector can be rotated. The topological sec-
tor has exact conformal invariance: the trace anomaly
and logarithm arise only from the fluctuations. Hence
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FIG. 3. The logarithmic part of F (n) for the TFI model.
F (n,L) was computed for L = 2, 4, · · · 40, and γ(n) extracted
by the same procedure as for the XXZ model. The dashed
lines are γ(n) = − 1

8
n and γ(n) = 3

8
n. In the inset, the data

is collapsed by plotting γ(n)/n as a function of (n− 1)γ′(1).

the logarithmic terms are compactification-independent
while the O(1) terms, arising from both sectors, are not.

The c = 1/2 Ising model exhibits strikingly different
behavior from the compact boson. In the transfer matrix
formalism, it is sufficient to consider the Shannon entropy
of the critical transverse-field Ising model,

H = −
N−1∑
i=1

σzi σ
z
i+1 +

N∑
i=1

σxi (11)

The Shannon entropy is calculated in the σz basis.
The extracted logarithm γ(n), shown in Fig. 3, sug-

gests a discontinuous n-dependence at n = 1. The dashed
lines illustrate the likely convergence to

γ(n) =


− 1

8n for n < 1

0 for n = 1
3
8n for n > 1

. (12)

Note that the rotation used in the boson case predicts
that γ(n) ∝ (n − 1), as there is always one ‘free’ center
of mass field. In the present Ising case, γ(n) ∝ n, which
is evidence that the rotation trick is not applicable and a
new analysis is required. In the inset of Fig. 3, the data is
collapsed by plotting γ(n)/n as a function of γ′(1)(n−1).
Recall γ(1) = 0 identically due to the normalization of
the entanglement spectrum.

The large and small n limits can be understood as
follows. At large n, Z(n) is dominated by the probabil-
ity p↑ = | 〈↑↑ · · · | 0〉 |2 and its partner p↓. In this ‘low
temperature’ regime, the defect line at τ = 0 is asymp-
totically a ‘fixed’ defect line. Now all n fields experience
this fixed defect condition, not n− 1 of them, and

F (n) ∼ n(F↑ − F )− log(2) (13)

Here F↑ is the free energy of a single replica with spins
constrained to σ = +1 along the defect. Again, there is

an anomaly due to the ‘cut strip’ geometry. The exter-
nal boundary conditions are free, so the relevant scaling
dimension is hf↑ = 1

16 [21]. Using Eq. (10), γ(n) = 3
8n

as observed. Likewise, in the small n limit, the defect
becomes disordered. This is obvious at the n = 1/2
point, where the geometry is in fact a half-strip with
a free boundary at τ = 0. With hff = 0, we arrive at
γ(n) = − 1

8n as observed. While these results strictly ap-
ply only in large and small n limits, the data appears to
support an n-dependent phase transition: for n < 1, the
defect flows to free boundary conditions for 2n decoupled
half strips, while for n > 1, the defect is fixed. This in-
terpretation is consistent with numerical results for the
O(1) term on a cylinder[16]. The renormalization group
equations for these b.c. flows can be analyzed perturba-
tively [22], and support the hypothesis of a phase tran-
sition. This perturbative approach could be generalized
to other CFTs in order to study further possible entan-
glement boundary conditions and replica transitions.
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