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Recent experiments on the conductance of thin, narrow superconducting strips have found periodic
fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to
approximately two flux quanta per strip area [A. Johansson et al., Phys. Rev. Lett. 95, 116805
(2005)]. We argue that the low-energy degrees of freedom responsible for dissipation correspond
to vortex motion. Using vortex/charge duality, we show that the superconducting strip behaves as
the dual of a quantum dot, with the vortices, magnetic field, and bias current respectively playing
the roles of the electrons, gate voltage, and source-drain voltage. In the bias-current vs. magnetic-
field plane, the strip conductance displays regions of small vortex conductance (i.e., small electrical
resistance) that we term ‘Weber blockade’ diamonds, which are dual to Coulomb blockade diamonds
in quantum dots. The blockade vanishes for magnetic fields at which the strip states of N and N+1
vortices have equal energies leading to periodic magnetoresistance oscillations.

Introduction – It is often effective to characterize
strongly correlated quantum systems in terms of the
emergent, collective freedoms that describe their low-
energy behavior. Vortices in superconductors consti-
tute the most prominent example of such freedoms.
The unbinding of such vortices leads to the Berezinskii-
Kosterlitz-Thouless phase transition exhibited by thin-
film superconductors [1], and is widely suspected to
be a feature of the superfluid-insulator quantum phase
transition—exhibited by a number of systems [2–4], par-
ticularly granular InO films [5, 6].

Magnetoresistance oscillations, starting with the
Little-Parks effect [7], are a well known feature of su-
perconductivity and, in particular, of mesoscopic super-
conducting devices; see e.g. [8]. Motivated by recent ex-
periments by the Shahar group on superconducting InO
strips [9], in this paper we address such magnetoresis-
tance oscillations from the vortex as opposed to the elec-
tron (i.e. charge) point of view. By using charge-vortex
duality, we show that the notion of a “vortex blockade”
allows us to explain such oscillations, in analogy with the
Coulomb blockade theory that has been applied widely
to electron passage through quantum dots. We also find
a series of ‘Weber’ diamonds, which are analogs of the
Coulomb-blockade diamonds, except for the important
distinction that the electrical conductivity is maximal
(rather than minimal) inside the Weber diamonds. The
charge-vortex duality allows us to make direct use of the
sophisticated formalism developed to quantitatively ac-
count for quantum dynamical effects in quantum dots.
Below, we apply the Beenakker formalism of dissipative
quantum dot transport [10], with the dissipation taking
place via the normal modes of the vortex medium in the
strip. Within this model of dissipation, we predict that
the resistivity of the strip should be activated inside the
diamonds and have a power law fall-off outside. Finally
we compare our results with experiments.

Setup – We are concerned with describing the current-
voltage characteristics of a superconducting strip that is
subject to a perpendicular magnetic field. The setup (see
Fig. 1a) consists of a superconducting strip, contacted
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FIG. 1: (a) Schematic: superconducting strip (gray) is im-
mersed in a magnetic field B pointing out of the plane of
the strip. The strip is contacted via a pair of leads (blue)
that are used to both supply a bias supercurrent J and mea-
sure the voltage V . Vortices (depicted by swirls) reside in the
strip, but occasionally traverse the strip (cf. the vortex trajec-
tory indicated by arrows). Via the Josephson relation, such
crossings correspond to voltage spikes and thus dissipation.
(b) Analogous quantum-dot circuit. The dot is depicted by
the gray disc. The vortices and the magnetic field in the strip
correspond, respectively, to the electrons and the gate volt-
age Vg of the dot. The source and drain for the vortices are
the vacua adjacent to the strip. As the vacua do not a have
well-defined number of vortices, we describe them as vortex
condensates (green) of well-defined phase, with the potential
energy difference between the condensates set by the bias su-
percurrent. Thus, J in the vortex analogy corresponds to the
source-drain voltage VS − VD in the dot.

via a pair of leads that are used to inject a supercurrent
into the strip. The voltage across the strip is read out
using the same leads, and we assume that the dissipation
probed originates entirely in the superconducting strip.

We make several restrictions on the strip geometry per-
taining to vortices. First, we assume that the strip thick-
ness . ξ, where ξ the coherence length. This assumption
ensures that the vortices are of pancake (Pearl) type, as
opposed to line vortices [11]. Second, based on magnetic
force imaging [12], we assume that the strip is narrow, in
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FIG. 2: (a) Vortex potential energy vs. its position across the
strip for various magnetic fields for a 94 nm wide strip with
ξ = 18 nm and ρ = 5 K, (see Ref. [13]). (b) Same as (a), but
with nonzero bias current along the strip and magnetic field
fixed at 0.12 T. Note the energy barriers near the strip edges
for small fields and currents.

the sense that vortices always lie in a line along the strip
center, like peas in a pod. In strips, wider than ≈ 5ξ
vortices tend to form Abrikosov-like lattices at higher
fields. We shall address the question of wider strips in a
separate article. Finally, we comment that we consider
the strip to be free of vortex pinning sites, and also to
be of finite length (in practice [9], ∼ 10 − 100 ξ) so that
configurations having distinct numbers of vortices have
sufficiently different energies as compared to kBT .
Dual description of a superconducting strip – Via
charge/vortex duality, we map the behavior of a super-
conducting strip onto that of a quantum dot capable of
undergoing a Coulomb blockade, as defined in Fig. 1b and
its caption. The origin of dissipation in the dual picture
is the Magnus force, due to the bias supercurrent, on the
vortices. This force creates a potential difference between
the vacua on either side of the strip, and thus it acts
as the source-drain bias of the dot does. The transport
of vortices across the superconducting strip has a direct
consequence for electrical transport within the strip, viz.,
each time a vortex passes across the strip, the phase be-
tween the left and right leads changes by 2π. The voltage
V between the leads is given by the Josephson relation
V = Φ0 ΓN , where ΓN is the net rate of vortex tunneling
and Φ0 ≡ h/2e the superconducting flux quantum.

Having defined the analogy, we split the problem of
computing the vortex conductance (i.e., the electrical re-
sistance) of the strip into two sub-problems. The first
consists of describing the energetics of static configura-
tions of distinct numbers of vortices. The second consists
of utilizing the vortex energetics to construct a master
equation describing vortex hopping. In constructing the
master equation we make the typical—and experimen-
tally relevant—assumption that vortex tunneling rates
Γt (Γb) between the strip and the top (bottom) vortex
reservoirs are the smallest energy scales in the system,
i.e., Γt,Γb � kBT . This assumption ensures that after a

vortex tunnels onto the strip it is completely de-phased
before it is likely to tunnel again, validating the use of
the master equation.

Vortex energetics – We describe the strip using the phase-
only model Hamiltonian

H = (ρ/2)

∫
dx dy |∇φ− (2π/Φ0)A|2 , (1)

in which ρ ∼ kBTBKT is the superfluid stiffness, φ is the
phase of the order parameter, and A = −B(y − w/2)êx
is the vector potential in the London gauge. We use a
coordinate system in which y runs from 0 to w across
the width of the strip and the long direction of the strip
runs in the x direction, Fig. 1a. We use the boundary
conditions ∇yφ|y=0,w = 0 and φ(x, y) = φ(x + L, y).

Although the boundary conditions at the interface with
the leads depend on microscopics, any choice of boundary
conditions that preserves the discreteness of the vortex
“charging” energy would result in magnetoresistance os-
cillations, and thus we use periodic boundary condition.
Next, we obtain the single- and inter-vortex energetics.

The potential energy of a single vortex in a strip,
as a function of its position y across the strip, was
thoroughly explored [13]. The results consist of four
parts: (i) The vortex core energy Ecore. (ii) The energy
of interaction of the vortex with its images, Eimage =
−2πρ ln[sin(πξ/w)/ sin(πy/w)], where the ln divergence
due to the closest image is cut off by vortex core length-
scale ξ. In further calculations we shall absorb the vortex
core energy into the cut-off lengthscale. (iii) The inter-
action of the vortex with the magnetic field, i.e., EvB =

(2π)2(ρB/Φ0)
[(
y − w/2

)2 − (ξ − w/2)2]. (iv) The po-

tential due to the Magnus force, i.e., EMagnus =
Φ0(J/w)(y − w/2), where J is the bias current.

The consequences of these four parts are summarized
in Fig. 2a, in which we plot the potential energy of a sin-
gle vortex in an infinitely long strip, as a function of its
position. For small applied magnetic fields, vortices are
unstable everywhere inside the strip. For larger magnetic
fields, the configuration having a vortex trapped in the
middle of the strip becomes metastable. At a still larger
field (i.e., the lower critical field) the vortex becomes sta-
ble, globally. A bias current along the strip produces a
tilting of the vortex potential energy (see Fig. 2b).

To find the interaction energy between vortices, de-
scribed by Eq. (1), we use the conformal mapping z =
x + iy = exp(πu/w) to identify the strip 0 < Imu < w
with the upper half-plane 0 < Im z <∞. The phase field
of a vortex located at z0 = x0+iy0 in the upper half-plane
can be found using a single image-vortex: φ(z; z0) =
Im [ln(z − z0)− ln(z − z∗0)]. Using the Cauchy-Riemann
equations, we identify the vortex potential Ghalf-plane as
the real part of the harmonic function, the imaginary
part of which corresponds to the vortex phase field. Ap-
plying the conformal mapping to Ghalf-plane, we find the
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FIG. 3: Weber diamonds in the bias current vs. magnetic
field plane (w = 94 nm, L = 1µm, ξ = 18 nm, and ρ = 5 K).
Regions inside the diamonds correspond to small electrical
resistance along the superconducting strip or, equivalently, to
small vortex conductance across it.

potential of a vortex in the strip

Gstrip(u;u0) = 2πρsRe

[
ln
eπu/w − eπu0/w

eπu/w − eπu∗
0/w

]
, (2)

and the inter-vortex energy Evv = 1
2

∑
i 6=j Gstrip(ui;uj).

Vortex blockade – We begin by examining the Weber
(cf. Coulomb) blockade in the absence of a bias current
(cf. source-drain voltage). The key to either blockade is
that for generic values of the magnetic field B (cf. gate
voltage Vg) the energies for N or N + 1 vortices (cf. elec-
trons) to be on the strip (dot) differ, and therefore vortex
(cf. charge) current is impeded. However, for special val-
ues of B (cf. Vg), the degeneracy condition

EN (B, J = 0) = EN+1(B, J = 0) (3)

is met, allowing vortices (cf. electrons) to move freely on
to and off of the strip (cf. dot), thus lifting the blockade.

For the case of nonzero bias current J , we must con-
sider separately the processes of adding vortices from the
top and bottom reservoirs. These considerations furnish
two stability conditions, viz.,

EN (B, J) + Etop/bottom = EN+1(B, J), (4)

that define the Weber diamonds, in which Etop and
Ebottom are the potentials of the top and bottom reser-
voirs. In Fig. 3, we plot the first few diamonds in the
J vs. B plane. The regions inside the diamonds corre-
spond to 1, 2, . . . vortices on the strip in the blockaded
regime (i.e., poor vortex conduction across, and there-
fore good electrical conduction along, the strip). For in-
creased bias currents, the potential difference between
the vortex reservoirs overcomes the blockade, driving the
strip into the good vortex-conduction regime (i.e., to poor
electrical conduction along the strip).
Matser Equation – In order to estimate the actual magni-
tude of the conductance of the superconducting strip, we
need to extend the static model of the blockade to include
the dynamics of vortex hopping and energy dissipation.
For the quantum-dot case, dissipation arises in the leads,

FIG. 4: Structure of a typical Webber diamond of Fig. 3 at
temperature of 0.1 K (and tunneling amplitude of 0.1 K):
(a) Map of the voltage across the strip as a function of mag-
netic field and bias current. Superposed on the map (red
curve) is ln[R0/R(B)], i.e. the logarithm of the zero bias re-
sistance as a function of magnetic field (R0 = 163 kΩ). (b) V-I
characteristic of the strip at two values of the magnetic field:
in the middle of a diamond (top) and between two diamonds
(bottom). At small biases there is, in both cases, an initial
linear response, followed by activated behavior inside the dia-
mond, and finally a universal power-law decay with secondary
diamonds superposed on it.

which act as “decohering baths” in which the quasipar-
ticles are assumed always to obey the Fermi-Dirac dis-
tribution [10]. In the vortex case, dissipation occurs not
in the vortex reservoirs but in the strip itself. However,
there are many possible damping mechanisms, such as
coupling to the bath of Bogoliubov quasiparticles. The
question of which mechanism dominates depends on the
microscopic properties of the superconductor. We shall
focus here on the simplest possibility: that the thermal
bath consists of the normal modes of the line of vortices
inside the strip. For narrow strips, the vortices act as
hard-core bosons, with a single gapless excitation mode
described by the Tomonaga-Luttinger (TL) model.

For the coupling between the vortex reservoirs and the
vortices inside the strip we introduce a model Hamilto-
nian that accounts for vortex tunneling between them:

Htun =

∫
dx b(x)

(
tt e

iθt + tb e
iθb
)

+ h.c., (5)

where b(x) is the operator that annihilates a vortex at
position x along the strip center. Following Beenakker’s
approach to quantum dots [10], which invokes Fermi’s
Golden Rule, we obtain a master equation for the proba-
bilities P0, P1, . . . of having 0, 1, . . . vortices on the strip:

∂tPN =
∑
ω,σ,α

PN+σTN+σ→N (ω)γα δEN+σ−EN−σ Eα+ω

−
∑
ω,σ,α

PNTN→N+σ(ω)γα δEN−EN+σ−σ Eα+ω, (6)

where σ = ±1, α ∈ {t,b}, Et and Eb are the poten-
tials of the top and bottom vortex reservoirs, the δ func-
tions account for energy conservation, and γα = t2αN is
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sample w [nm] L [µm] P [T] Pgeometric [T] ξ [nm]

39Ue 40 1.5 0.083 0.034 10

86Gc 94 1.0 0.048 0.022 17

86Gd 94 1.0 0.046 0.022 16

86Ge 94 1.0 0.043 0.022 15

TABLE I: Coherence length ξ (a fitting parameter) required
to reproduce the experimentally measured period P using
our theoretical model for four samples [14] of widths w and
lengths L (Table I of Ref. [9]). In each case, we fit the ex-
perimental period at the intermediate value of magnetic field
B ≈ 1.5 T. For comparison, we also provide the geometric pe-
riod Pgeometric = (Φ0 wL)−1. For all samples, we find reason-
able values for ξ, which should lie between 10 and 30 nm [9].

the vortex tunneling coefficient in which N accounts for
the number of positions at which the vortex can tunnel.
The matrix elements TN→N±1(ω) correspond to adding
or subtracting a vortex from the TL liquid of vortices in
the strip at frequency ω:

TN→N±1 = (nB(ω) + 0.5± 0.5)AN (ω), (7)

where nB(ω) is the Bose function and AN (ω) =
2 ImG(ω+iδ, k = 0) is the zero-momentum spectral func-
tions of the TL liquid with N vortices [15].

Using our TL liquid model of dissipation, we investi-
gate the structure of a typical Weber diamond for the
strip parameters of Fig. 3. In Fig. 4a, we plot the map of
the voltage as a function of B and J . The map indicates
that, even at reasonable temperatures, there is a critical
bias current Jc(B) above which the blockade is broken
and the voltage rises. Jc(B) can be clearly seen in the
V-I characteristics, which show an activated behavior in-
side the diamond (Fig. 4b). Comparing Jc(B) with the
zero-bias resistance R(B), we see that R(B) ∼ e−Jc(B)/E ,
where the energy scale E ≈ kBT .
Comparison with experiment – Using Eq. (3), we can es-
timate theoretically the period of the magnetoresistance

oscillations for the sample geometries of Ref. [9]. The
only undetermined parameter in the estimate is ξ. Treat-
ing ξ as a fitting parameter, we were able to fit the peri-
ods of all four narrow-strip samples (Table I). We remark
that the experimentally observed period is always longer
than the geometric period associated with adding a flux
quantum to the area of the strip (Table I). Our theory
implies that the effective width is narrower than the ge-
ometrical width, due to the strong attraction of vortices
to the strip edges by their images (i.e., Eimage), thus re-
solving the period puzzle. The experimental signal shows
only mild magnetoresistance oscillations, rather than the
pronounced vortex-blockade peaks that we predict. We
suspect that this smearing is a result of Γt and Γb being
large, and thus the strip operating in between the open-
and closed-dot regimes. Alternatively, the smearing may
be a result of thermal broadening. If so, lowering the
temperature should strengthen the blockade features.

Concluding remarks – We have demonstrated that mag-
netoresistance oscillations in superconducting strips can
be readily be described using vortex—as opposed to
Cooper-pair or charge—coordinates. Via an analogy
with the physics of quantum dots, we have constructed a
model for the ‘Weber’ blockade of a superconducting strip
that captures the essential features of the magnetore-
sistance oscillations observed experimentally. The exact
dissipation mechanism remains to be understood; it will
determine the shape of the Coloumb blockade peaks pre-
dicted in Eq. (6) but not the magnetoresistance period.
Alternatively, one could use the experimental blocakde
signatures to investigate the nature of dissipation.
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Concurrent work by Y. Atzmon and E. Shimshoni consid-
ers magnetoresistance oscillations from a complementary
point of view [17], and arrived at similar conclusions.
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