aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Optimal Control for Unitary Preparation of Many-Body
States: Application to Luttinger Liquids
Armin Rahmani and Claudio Chamon
Phys. Rev. Lett. 107, 016402 — Published 1 july 2011
DOI: 10.1103/PhysRevlLett.107.016402


http://dx.doi.org/10.1103/PhysRevLett.107.016402

Optimal control for unitary preparation of many-body states: application to Luttinger liquids

Armin Rahmani and Claudio Chamon
Physics Department, Boston University, Boston, MA 02215, USA

Many-body ground states can be prepared via unitary ewaliti cold atomic systems. Given the initial state
and a fixed time for the evolution, how close can we get to adégjround state if we can tune the Hamiltonian
in time? Here we study this optimal control problem focusimgLuttinger liquids with tunable interactions.
We show that the optimal protocol can be obtained by simdlatemealing. We find that the optimal interaction
strength of the Luttinger liquid can have a nonmonotonicetidependence. Moreover, the system exhibits a
marked transition when the ratig/ L of the preparation time to the system size exceeds a cniédaé. In this
regime, the optimal protocols can prepare the states witlogtl perfect accuracy. The optimal protocols are
robust against dynamical noise.

Loading cold atomic gases into optical lattices provides aremphasize that we are concerned only with the final state and
opportunity to study the nonequilibrium properties of quan maintaining adiabaticity during the evolution, as for exéen
tum matter in thermally isolated and highly tunable environ in Ref. [13], is not a constraint. Moreover, we are restddte
ments [1, 2]. The central object of such studies is a manybodlocal Hamiltonians allowed by the experimental setup.
guantum state which undergoes unitary evolution generated The focus of this work is the Luttinger model for interacting
by a time-dependent local Hamiltonian. fermions in one space dimension, whose Hamiltonian can be

In an important class of problems, we are interested in uswritten in momentum space as follows
ing the unitary evolution to transform an initial state theat
the ground stat(_e of a local Hamiltonian to the ground state H— “Z (K I, + 1 ¢ <I>q<I>q) )
of another Hamiltonian. Such problems are relevant for the K
preparation of states in regimes where direct equilibnaigo
difficult [3-5]. Ground states preparation is the key to simu where®, are bosonic fields arid, their conjugate momenta.
lating many-body model Hamiltonians, such as the Hubbard he parametera and K are respectively the velocity of the
model, which can be realized with cold atoms [6, 7]. charge carriers and the Luttinger parameter. We consider a

If one had infinite time to wait, according to the adiabatic fixed number of particles, focusing on the half-filled case.
theorem of quantum mechanics, the unitary transformatiodhe zero mode, which is responsible for changing the parti-
can be done with arbitrary accuracy in any finite system. Excle number sector in the bosonized description, is theeefor
trinsic losses and quantum decoherence, however, set an upgxcluded in the above expression. Assuming we have an odd
bound on the practical time to carry out the process. In any finumber of sited. in the system, the momengaare given by
nite time 7, nonadiabatic effects are unavoidable [8]. These; =277 forn =1- L L
effects are most severe in the absence of an energy gap [9]. In This Luttinger Hamlltonlan is the low-energy effective the
this paper we focus precisely on dynamics within the gaples8ry for models of interacting fermions on a one-dimensional
phase by studying Luttinger liquids. lattice, in particular the 1D Hubbard model

Let us start by casting the question of finding the opti-
mal dynamical protocol in a generlc way. Assume we have g — Z {_c cjp1+hee + V(n,
a local HamiltonianH ({g}) = Z ", gi O; where theO;s
are local operators and thgs are coupling constants that,
within a given range, can be tuned to any value as a funcSince spin degrees of freedom are not essential for ourstiscu
tion of time. We would like to transformi¥,) which is  sion, here we focus on spinless fermions. With the hopping
the ground state off({g1}) to |¥,), the ground state of amplitude set to unity as in Eq. (3), the Luttinger paranseter
H({g2}) in a given timer. How close can the final state v andK are related td” via the Bethe ansatz (see Ref. [14]
[W(r)) = T exp[—i [y dt’H({g(t')})]|¥1) be to the desired for example). o
ground staté\l}ﬁ') HereT represents time_ordering_ We will consider trajectories foru and K that are

The meaning of closeness above depends on the measigdrametrized by a time-depende¥itt): v = w(V) and
used. There are several popular measures like the excess dh-= K (V). The strength of Hubbard-type interactions can

ergy for example [10]. Here we use the wave function overla€ tuned in optical lattices both by manipulating the opti-
cal potential with lasers [15-17] and through Feshbach res-

Fl{gt)}] = (T (1)|Wy)|2. (1)  onances controlled with magnetic fields [17, 18].
Notice that while the relation between the Luttinger liquid
The problem is then reduced to finding the time-dependent.L) and the 1D Hubbard model holds at low energies, the
{g(t)} that maximizes the functional above. This interestingresults we find for the optimum dynamical protocol in the for-
guestion in quantum dynamics [8] is in fact a typical problemmer should be applicable to the latter when the total momen-
in optimal control theory as noted in Ref. [11, 12]. Let ustum gn, in each harmonic oscillator mode in Eq. (2), where

q>0
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n, is the occupation number, is small compared witR [19].  we obtain the following recursion relation fog by solving
We shall check this condition a posteriori. Eq. (6) for time-independentandc,

At half filling, the gapless LL description holds fer2 <
j—1
q uj At 4 arctan <—izq )1 . (N

V < 2. AtV = 2, a charge density wave (CDW) gap i
opens up. An optimal power-law protocol for bringing the Zg = 1  tan o
system from the gapped phase to the critical point was found '

in Ref. [20] using adiabatic perturbation theory [21]. Here Our focus here is finding an optimal protocol but Eq. (7)
consider the problem of transforming the system initially a 5qye is of interest in its own right since it gives an exaftiso
the CDW phase transition critical point to a point deep withi {jon, of the nonequilibrium wave function for any sequence of

the gapless LL phase. o . sudden quenches in the Luttinger model. Notice that knowing
Let us now assume we are |nl|t|ally in the ground state at, (4 for all modes determines the many-body wave function.
the critical point {1 = 2, K; = 5). We would like to find Recursively solving the above relation Eq. (7) yields

the time-dependent interaction strength < V' (¢) < 2 for zq(r) = zI for any given piece-wise constant interaction
0 < t < 7 that yields the maximum overlap with the ground strength. Definingy, = 1/K>, the overlap Eq. (1) can then

state of the Hamiltonian Eq. (3) withi = V4 at timer. be written as
We proceed by expressid@, = —i dg, in EQ. (2). The
time-dependent many-body wave function of the system fora  _ - R 24(1)
protocolV (t) (and consequently(t) and K (¢)) can then be F(Vi,...VN) = exp Zlﬂ <4 02 m)
q>0

written in the|{®,}) basis as (®)
The overlap above is written as a multi-variable function

of {V;}. To find the optimal protocol, we minimize the cost

function€({V;}) = — In F({V;}) with respect to the config-

where ® and S indicate the real and imaginary part and uration{V;}. This can be done by Monte-Carlo (MC) meth-
W, (¢, 1) is the solution of the following Schrédinger equation ods. We perform simulated annealing calculations with ki-
netic moves consisting of random small changes in randomly

V({@g}) = [T [Wa(R @4, 1) Uo(S @y, 1)] (4)

q>0

, K(t) . 1 5 chosernV;s.
{zat —u(t) <_T ot K(t) ¢ ¢ )] Ty(¢:t) =0 We compare the results of the optimal protocol against two
additional calculations. We consider the one-parameteava
with appropriate initial conditions. tional protocolV (¢) = Vi + (V> — V) (t/7)" and calculate the
Up to an unimportant overall phase, the solution of thefinal overlap for the linearr{= 1) as well as for the the best
above differential equation is power-law protocol{ = ry;, With 9, £(r) = 0). The opti-

mal protocol found by MC simulations performs significantly

2q T 1 9 better than both of the above.
Vo(e,t) = (7) [R2()]* exp (=g 2(t) ¢°) () In Fig. 1, we show the finaf for the optimal protocol ob-
tained by an unbiased MC simulation as well as for the linear
wherez,(t) is a complex-valued function that satisfies the fol- and the best power-law protocols fg§ = —1.5 and several
lowing Riccati equation system sizes. Whery L becomes larger than a critical value,
the final £ obtained by MC optimization exhibits a qualita-
u(t i i
i2(t) = q ﬁ [zg(t) —a2(1)] (6) :::/:g%r:sjrégee. of behavior and shoots down by several orders of
The value of the cost function obtained by MC simulations
with (t) = 1/K(t) and the initial condition, (0) = % is generically only an upper bound on the actual minimum.

To perform the optimization for the many-body system, weForr < 7. o« L, different annealing histories lead to a unique
discretize time and approximate a genérdt) by a piece- protocol suggesting that the the minimum found is likely the
wise constant function over the interv@l. .. 7]. This allows  global minimum. Forr > 7. however, we never converge
us to write the final overlap, which is a functional¥ft), as  to a unique protocol indicating that we have only found a lo-
a multi-variable function that can be maximized numericall cal minimum. In this regime, finding the global minimum
An unbiased optimal protocol can be found by increasing thésecomes exceedingly difficult, particularly for largertsyas
number of discretization points. due to the increased computational complexity. Nevertisele

Note that our approach to computing the overlap could alsmotice that the minima we find haw&r) very close to zero
be useful for a variety of other calculations (see [22, 23] fo and can prepare the new ground state almost exactly.
example) in the quench dynamics of Luttinger liquids. Let Although it is not clear from the finite-size scaling of the
us assume a sequeneg with j = 1... N such that with  obtained¢ () that there is a transition in the thermodynamic
At =1/N,V(t) = V] for (j — 1)At < t < jAt. We then  limit, the drastic change of the system behavior strongly su
get two corresponding sequenegsandc;. If 231 = z,(jAY), gests the presence of a true transition for the global mimmu
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1072 0 10° from z,(0) = o, By rescal_lng time in Eq. (6), we not|ce_
/L that the existence of a solution depends only on the quantity

7q. We have checked numerically that with a two-parameter
) ) ) ] piece-wise constant protocol, we are able to obtain saistio
FIG. 1. The final€ obtained by Monte-Carlo (MC) simulations

= ' - ~ >
compared with the linear and best power-law protocols. T fi 10 24(7) a2 with [az — o | _.O(l) qnly yvhean 2 0(). .
1 We conjecture that even with an infinite number of varia-

€ plunges by several orders of magnitude fofiL. > 7./L =~ § . o . . .
(marked with a star). Note that in this regime, the data ryeagire- thnal parameters, a minimum t'm?@f(l/Q) is still required.
sents an upper bound @i{7) and the actual cost function could be Circumstantial support for this conjecture comes from tf@ M
even smaller. simulations with piece-wise constant protocols wheregas s
in Fig. 2 forr < 7, there is convergence in the shape of the
optimal protocols as we increasé. Notice that although we
have more variation parametédrsfor larger NV, each of them
acts for a shorter time. Whepr is large enough such that,
‘ ‘ ‘ with two variational parameters,(7) = « has a solution,
2 4 6 8 we have an infinite number of solutions fiyr > 2.
For the many-mode problem, we wish to hayér) =
FIG. 2. The interaction strengthi(¢) as a function of timg for ~ for all the modes. From the discussion of the single-mode cas
the optimal protocol obtained by MC simulations for = 129, above, we find that, for times larger than some L, an infi-
7 = 8andV, = —1.5. Here, the optimal protocol converges to a pjte number of solutions exists for the slowest mage-(2%)
§mooth oscillatory function as we increase the number afeiza- and consequently for every individual mogleSince the sys-
tion pointsN. : . _
tem of equations, (1) = a2, Yq is under-determined when
the number of variational parameters is larger than 1, it
Note that the local minima we find are expected to be closeigggnf; plal;slble t?oart;ﬁr;ogz gc @eoﬁjvgannof'?gxzcgfiign
to the actual global minimum for smaller systems. z(T e ; . ' '
: ; . . able to explicitly find such exact solutions for the many-mod
An interesting feature of the optimal protocols is that, as -
I . . . problem and thus cannot rule out the possibility that the-tra
seen in Fig. 2, the interaction strength can be an oscillator”...
sition at > 7. « L happens becausge,(7) — a»| for all

function of time. Note that increasing the number of dis- A
o . modes can become infinitesimally small rather than exactly
cretization points leads to convergence to smooth but non-

) ; ; zero.
monotonic protoqols in the < Tc Fegime. For large enough Before proceeding, let us check the applicability of the re-
systems, the period of the oscillations does not have agtron . .
o sults obtained for the Luttinger model Eq. (2) to the Hubbard
dependence on the system sizeor the preparation time.
. . ; model Eq. (3). We need to calculate the total mode momentum
With no other time scale left, we then conjecture that the os- L . 0
I ; qng. Writing the occupation number ag = (¢,)/2¢) — 1/2
cillations must be a consequence of the short-distancéHeng 0 a .
. i ; o - wheree? is the ground-state energy of a mode, we obtain
scale, i.e. the lattice spacing which is set to unity in owbpr a _
lem. As seen in Fig. 3, the period of the oscillations de@sas 7q(t) = o (K(t) |24 (t)* + ﬁ) — 1. We find that
as Vs becomes larger. This observation is consistent with avhen the final overlap is large, the evolution does not typi-
short-distance cut-off controlling the oscillations as #eloc-  cally excite electrons too far away from the Fermi surfaae. F
ity »(V') is an increasing function of the interaction strengthexample, the protocol fof. = 129 and~ = 16 in Fig. 2 has
V. maxg ¢ [qng(t)] = 0.302 which is indeed in the linear regime.
We now speculate a possible scenario for the nature of the From the experimental point of view, the extremely small
transition above. Let us consider a single mgdeWe ex-  £(7) obtained in the regime > 7. can be very useful for the
pect to be able to find an exact solutiondg(r) = a, by  preparation of many-body states. In practice howevergther
using a two-parameter variational protocol and solving twoare always inaccuracies in the experimental implememtatio
equations (real and imaginary part®f) and two unknowns. of a prescribed protocol. We check the robustness of these
Generically however, this system of equations does not adsrotocols against random perturbatiofig(¢) taken from a
mit a solution. Forr = 0, for example,z, cannot change uniform distribution|—W/2...W/2] for each segment of the
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FIG. 4. Left: the noise-averagefl(r) as a function of W
for a random noisedV (t) taken from a uniform distribution
[-W/2...W/2]. Right: final cost () as a function 06V; where
the initial wave function is the ground state for interanti&irength
V1 — 6Vi. The plots are fol, = 65, 7 = 16 andV> = —1.5.

piece-wise constarit (t). We also check the effect of errors
in the initial wave function by applying the protocol to the
ground state fob;, — §V; instead of;.

In Fig. 4, we showE(7) as a function obV; in addition to
the noise-averagefi7) as a function of¥ for the MC opti-
mized, best power-law and linear protocols and foe= 65,

7 =16 andV, = —1.5. As seen in the figure, even for large
noise of the order a few percent of the bandwidth, the MC op
timized protocols yield much small€(r) than the power-law
and linearV/ (t). These studies indicate that, practically, using
the optimal protocols is advantageous even in the presdnce

experimental errors and inaccuracies.

To better understand the effects of this dynamical noise on

the behavior of thermally isolated Luttinger liquids, weneo
sider a simple case. We assume we are initially in the groun
state for interaction strengt¥y (with correspondingy, and
up) andV (t) = V, + dV (¢) for a timer wheredV (¢) is a
random noise of strengt¥’. ForW = 0, the wave function
remains in the ground state aéi¢r) = 0. For smalliW, we
can linearize Eq. (6) and writé 2, = 2quq (024 — dc) where
0zg = 24 — g @andda = o — ag. We then obtain

024(7) = 2iquo / dt 21940 (=) g0 (t). (9)

0

Using Eq. (1), we get(7) Tz Ygs0l02g(T)? +
0O(323) which assuming uncorrelated noiex(t)da(t')) oc

W?2§(t — t') and using Eq. (9) above leads&¢r) oc 7W?2.
Note that sincer, o L, strong noise limits the size of the

4

optimization over all ramp shapes yields nonmonotonic-opti
mal protocols. The behavior of the system exhibits a marked
transition forr > 7. « L where the states can be transformed
with almost perfect accuracy. The optimal protocols areisbb
against noise, which makes them of practical experimemtal i
portance for the preparation of states in cold atomic system
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