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Optimal control for unitary preparation of many-body states: application to Luttinger liquids
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Many-body ground states can be prepared via unitary evolution in cold atomic systems. Given the initial state
and a fixed time for the evolution, how close can we get to a desired ground state if we can tune the Hamiltonian
in time? Here we study this optimal control problem focusingon Luttinger liquids with tunable interactions.
We show that the optimal protocol can be obtained by simulated annealing. We find that the optimal interaction
strength of the Luttinger liquid can have a nonmonotonic time dependence. Moreover, the system exhibits a
marked transition when the ratioτ/L of the preparation time to the system size exceeds a criticalvalue. In this
regime, the optimal protocols can prepare the states with almost perfect accuracy. The optimal protocols are
robust against dynamical noise.

Loading cold atomic gases into optical lattices provides an
opportunity to study the nonequilibrium properties of quan-
tum matter in thermally isolated and highly tunable environ-
ments [1, 2]. The central object of such studies is a many-body
quantum state which undergoes unitary evolution generated
by a time-dependent local Hamiltonian.

In an important class of problems, we are interested in us-
ing the unitary evolution to transform an initial state thatis
the ground state of a local Hamiltonian to the ground state
of another Hamiltonian. Such problems are relevant for the
preparation of states in regimes where direct equilibration is
difficult [3–5]. Ground states preparation is the key to simu-
lating many-body model Hamiltonians, such as the Hubbard
model, which can be realized with cold atoms [6, 7].

If one had infinite time to wait, according to the adiabatic
theorem of quantum mechanics, the unitary transformation
can be done with arbitrary accuracy in any finite system. Ex-
trinsic losses and quantum decoherence, however, set an upper
bound on the practical time to carry out the process. In any fi-
nite timeτ , nonadiabatic effects are unavoidable [8]. These
effects are most severe in the absence of an energy gap [9]. In
this paper we focus precisely on dynamics within the gapless
phase by studying Luttinger liquids.

Let us start by casting the question of finding the opti-
mal dynamical protocol in a generic way. Assume we have
a local HamiltonianH({g}) =

∑M

i=1 gi Ôi where theÔis
are local operators and thegis are coupling constants that,
within a given range, can be tuned to any value as a func-
tion of time. We would like to transform|Ψ1〉 which is
the ground state ofH({g1}) to |Ψ2〉, the ground state of
H({g2}) in a given timeτ . How close can the final state
|Ψ(τ)〉 = T exp[−i

∫ τ

0
dt′H({g(t′)})]|Ψ1〉 be to the desired

ground state|Ψ2〉? HereT represents time-ordering.
The meaning of closeness above depends on the measure

used. There are several popular measures like the excess en-
ergy for example [10]. Here we use the wave function overlap

F [{g(t)}] = |〈Ψ(τ)|Ψ2〉|
2. (1)

The problem is then reduced to finding the time-dependent
{g(t)} that maximizes the functional above. This interesting
question in quantum dynamics [8] is in fact a typical problem
in optimal control theory as noted in Ref. [11, 12]. Let us

emphasize that we are concerned only with the final state and
maintaining adiabaticity during the evolution, as for example
in Ref. [13], is not a constraint. Moreover, we are restricted to
local Hamiltonians allowed by the experimental setup.

The focus of this work is the Luttinger model for interacting
fermions in one space dimension, whose Hamiltonian can be
written in momentum space as follows

H = u
∑

q>0

(

K ΠqΠ−q +
1

K
q2 ΦqΦ−q

)

(2)

whereΦq are bosonic fields andΠq their conjugate momenta.
The parametersu andK are respectively the velocity of the
charge carriers and the Luttinger parameter. We consider a
fixed number of particles, focusing on the half-filled case.
The zero mode, which is responsible for changing the parti-
cle number sector in the bosonized description, is therefore
excluded in the above expression. Assuming we have an odd
number of sitesL in the system, the momentaq are given by
q = 2π n

L
for n = 1 · · · , L−1

2 .
This Luttinger Hamiltonian is the low-energy effective the-

ory for models of interacting fermions on a one-dimensional
lattice, in particular the 1D Hubbard model

H =
∑

j

[

−c†jcj+1 + h.c.+ V (nj −
1

2
)(nj+1 −

1

2
)

]

. (3)

Since spin degrees of freedom are not essential for our discus-
sion, here we focus on spinless fermions. With the hopping
amplitude set to unity as in Eq. (3), the Luttinger parameters
u andK are related toV via the Bethe ansatz (see Ref. [14]
for example).

We will consider trajectories foru and K that are
parametrized by a time-dependentV (t): u = u(V ) and
K = K(V ). The strength of Hubbard-type interactions can
be tuned in optical lattices both by manipulating the opti-
cal potential with lasers [15–17] and through Feshbach res-
onances controlled with magnetic fields [17, 18].

Notice that while the relation between the Luttinger liquid
(LL) and the 1D Hubbard model holds at low energies, the
results we find for the optimum dynamical protocol in the for-
mer should be applicable to the latter when the total momen-
tum qnq in each harmonic oscillator mode in Eq. (2), where
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nq is the occupation number, is small compared withπ/2 [19].
We shall check this condition a posteriori.

At half filling, the gapless LL description holds for−2 <
V < 2. At V = 2, a charge density wave (CDW) gap
opens up. An optimal power-law protocol for bringing the
system from the gapped phase to the critical point was found
in Ref. [20] using adiabatic perturbation theory [21]. Herewe
consider the problem of transforming the system initially at
the CDW phase transition critical point to a point deep within
the gapless LL phase.

Let us now assume we are initially in the ground state at
the critical point (V1 = 2, K1 = 1

2 ). We would like to find
the time-dependent interaction strength−2 < V (t) < 2 for
0 < t < τ that yields the maximum overlap with the ground
state of the Hamiltonian Eq. (3) withV = V2 at timeτ .

We proceed by expressingΠq = −i ∂Φq
in Eq. (2). The

time-dependent many-body wave function of the system for a
protocolV (t) (and consequentlyu(t) andK(t)) can then be
written in the|{Φq}〉 basis as

Ψ({Φq}) =
∏

q>0

[

Ψq(ℜ Φq, t) Ψq(ℑ Φq, t)
]

(4)

whereℜ and ℑ indicate the real and imaginary part and
Ψq(φ, t) is the solution of the following Schrödinger equation

[

i∂t − u(t)

(

−
K(t)

4
∂2
φ +

1

K(t)
q2 φ2

)]

Ψq(φ, t) = 0

with appropriate initial conditions.
Up to an unimportant overall phase, the solution of the

above differential equation is

Ψq(φ, t) =

(

2 q

π

)
1

4

[ℜ zq(t)]
1

4 exp
(

−q zq(t) φ
2
)

(5)

wherezq(t) is a complex-valued function that satisfies the fol-
lowing Riccati equation

i żq(t) = q
u(t)

α(t)

[

z2q(t)− α2(t)
]

(6)

with α(t) ≡ 1/K(t) and the initial conditionzq(0) = 1
K1

.
To perform the optimization for the many-body system, we

discretize time and approximate a generalV (t) by a piece-
wise constant function over the interval[0 . . . τ ]. This allows
us to write the final overlap, which is a functional ofV (t), as
a multi-variable function that can be maximized numerically.
An unbiased optimal protocol can be found by increasing the
number of discretization points.

Note that our approach to computing the overlap could also
be useful for a variety of other calculations (see [22, 23] for
example) in the quench dynamics of Luttinger liquids. Let
us assume a sequenceṼj with j = 1 . . .N such that with
∆t = τ/N , V (t) = Ṽj for (j − 1)∆t < t < j∆t. We then
get two corresponding sequencesuj andαj . If zjq ≡ zq(j∆t),

we obtain the following recursion relation forzjq by solving
Eq. (6) for time-independentu andα,

zjq = i αj tan

[

q uj ∆t+ arctan

(

−i
zj−1
q

αj

)]

. (7)

Our focus here is finding an optimal protocol but Eq. (7)
above is of interest in its own right since it gives an exact solu-
tion of the nonequilibrium wave function for any sequence of
sudden quenches in the Luttinger model. Notice that knowing
zq(t) for all modes determines the many-body wave function.

Recursively solving the above relation Eq. (7) yields
zq(τ) = zNq for any given piece-wise constant interaction
strength. Definingα2 ≡ 1/K2, the overlap Eq. (1) can then
be written as

F(Ṽ1, . . . ṼN ) = exp

[

∑

q>0

ln

(

4 α2
ℜ zq(τ)

| α2 + zq(τ) |2

)

]

.

(8)
The overlap above is written as a multi-variable function

of {Ṽj}. To find the optimal protocol, we minimize the cost
functionE({Ṽj}) ≡ − lnF({Ṽj}) with respect to the config-
uration{Ṽj}. This can be done by Monte-Carlo (MC) meth-
ods. We perform simulated annealing calculations with ki-
netic moves consisting of random small changes in randomly
chosenṼjs.

We compare the results of the optimal protocol against two
additional calculations. We consider the one-parameter varia-
tional protocolV (t) = V1+(V2−V1)(t/τ)

r and calculate the
final overlap for the linear (r = 1) as well as for the the best
power-law protocol (r = rmin with ∂r E(r) = 0). The opti-
mal protocol found by MC simulations performs significantly
better than both of the above.

In Fig. 1, we show the finalE for the optimal protocol ob-
tained by an unbiased MC simulation as well as for the linear
and the best power-law protocols forV2 = −1.5 and several
system sizes. Whenτ/L becomes larger than a critical value,
the finalE obtained by MC optimization exhibits a qualita-
tive change of behavior and shoots down by several orders of
magnitude.

The value of the cost function obtained by MC simulations
is generically only an upper bound on the actual minimum.
Forτ < τc ∝ L, different annealing histories lead to a unique
protocol suggesting that the the minimum found is likely the
global minimum. Forτ > τc however, we never converge
to a unique protocol indicating that we have only found a lo-
cal minimum. In this regime, finding the global minimum
becomes exceedingly difficult, particularly for larger systems
due to the increased computational complexity. Nevertheless,
notice that the minima we find haveE(τ) very close to zero
and can prepare the new ground state almost exactly.

Although it is not clear from the finite-size scaling of the
obtainedE(τ) that there is a transition in the thermodynamic
limit, the drastic change of the system behavior strongly sug-
gests the presence of a true transition for the global minimum.
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FIG. 1. The finalE obtained by Monte-Carlo (MC) simulations
compared with the linear and best power-law protocols. The final
E plunges by several orders of magnitude forτ/L > τc/L ≈

1

8

(marked with a star). Note that in this regime, the data merely repre-
sents an upper bound onE(τ ) and the actual cost function could be
even smaller.

FIG. 2. The interaction strengthV (t) as a function of timet for
the optimal protocol obtained by MC simulations forL = 129,
τ = 8 andV2 = −1.5. Here, the optimal protocol converges to a
smooth oscillatory function as we increase the number of discretiza-
tion pointsN .

Note that the local minima we find are expected to be closer
to the actual global minimum for smaller systems.

An interesting feature of the optimal protocols is that, as
seen in Fig. 2, the interaction strength can be an oscillatory
function of time. Note that increasing the number of dis-
cretization points leads to convergence to smooth but non-
monotonic protocols in theτ < τc regime. For large enough
systems, the period of the oscillations does not have a strong
dependence on the system sizeL or the preparation timeτ .
With no other time scale left, we then conjecture that the os-
cillations must be a consequence of the short-distance length
scale, i.e. the lattice spacing which is set to unity in our prob-
lem. As seen in Fig. 3, the period of the oscillations decreases
asV2 becomes larger. This observation is consistent with a
short-distance cut-off controlling the oscillations as the veloc-
ity u(V ) is an increasing function of the interaction strength
V .

We now speculate a possible scenario for the nature of the
transition above. Let us consider a single modeq. We ex-
pect to be able to find an exact solution tozq(τ) = α2 by
using a two-parameter variational protocol and solving two
equations (real and imaginary part ofzq) and two unknowns.
Generically however, this system of equations does not ad-
mit a solution. Forτ = 0, for example,zq cannot change

FIG. 3. The optimal protocol interaction strengthV (t) for two dif-
ferent values ofV2 = −1.0 andV2 = −0.5.

from zq(0) = α1. By rescaling time in Eq. (6), we notice
that the existence of a solution depends only on the quantity
τq. We have checked numerically that with a two-parameter
piece-wise constant protocol, we are able to obtain solutions
to zq(τ) = α2 with |α2 −α1| ≃ O(1) only whenqτ & O(1).

We conjecture that even with an infinite number of varia-
tional parameters, a minimum time ofO(1/q) is still required.
Circumstantial support for this conjecture comes from the MC
simulations with piece-wise constant protocols where, as seen
in Fig. 2 for τ < τc, there is convergence in the shape of the
optimal protocols as we increaseN . Notice that although we
have more variation parametersṼi for largerN , each of them
acts for a shorter time. Whenqτ is large enough such that,
with two variational parameters,zq(τ) = α2 has a solution,
we have an infinite number of solutions forN > 2.

For the many-mode problem, we wish to havezq(τ) = α2

for all the modes. From the discussion of the single-mode case
above, we find that, for times larger than someτ ∝ L, an infi-
nite number of solutions exists for the slowest mode (q = 2π

L
)

and consequently for every individual modeq. Since the sys-
tem of equationszq(τ) = α2, ∀q is under-determined when
the number of variational parameters is larger thanL − 1, it
seems plausible that forτ > τc ∝ L, one can simultaneously
satisfyzq(τ) = α2 for all modes. We have not, however, been
able to explicitly find such exact solutions for the many-mode
problem and thus cannot rule out the possibility that the tran-
sition atτ > τc ∝ L happens because|zq(τ) − α2| for all
modes can become infinitesimally small rather than exactly
zero.

Before proceeding, let us check the applicability of the re-
sults obtained for the Luttinger model Eq. (2) to the Hubbard
model Eq. (3). We need to calculate the total mode momentum
qnq. Writing the occupation number asnq = 〈εq〉/2ε

0
q − 1/2

whereε0q is the ground-state energy of a mode, we obtain

nq(t) = 1
4ℜzq(t)

(

K(t) |zq(t)|
2 + 1

K(t)

)

− 1
2 . We find that

when the final overlap is large, the evolution does not typi-
cally excite electrons too far away from the Fermi surface. For
example, the protocol forL = 129 andτ = 16 in Fig. 2 has
maxq,t [qnq(t)] = 0.302 which is indeed in the linear regime.

From the experimental point of view, the extremely small
E(τ) obtained in the regimeτ > τc can be very useful for the
preparation of many-body states. In practice however, there
are always inaccuracies in the experimental implementation
of a prescribed protocol. We check the robustness of these
protocols against random perturbationsδV (t) taken from a
uniform distribution[−W/2 . . .W/2] for each segment of the
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FIG. 4. Left: the noise-averagedE(τ ) as a function ofW
for a random noiseδV (t) taken from a uniform distribution
[−W/2 . . .W/2]. Right: final costE(τ ) as a function ofδV1 where
the initial wave function is the ground state for interaction strength
V1 − δV1. The plots are forL = 65, τ = 16 andV2 = −1.5.

piece-wise constantV (t). We also check the effect of errors
in the initial wave function by applying the protocol to the
ground state forV1 − δV1 instead ofV1.

In Fig. 4, we showE(τ) as a function ofδV1 in addition to
the noise-averagedE(τ) as a function ofW for the MC opti-
mized, best power-law and linear protocols and forL = 65,
τ = 16 andV2 = −1.5. As seen in the figure, even for large
noise of the order a few percent of the bandwidth, the MC op-
timized protocols yield much smallerE(τ) than the power-law
and linearV (t). These studies indicate that, practically, using
the optimal protocols is advantageous even in the presence of
experimental errors and inaccuracies.

To better understand the effects of this dynamical noise on
the behavior of thermally isolated Luttinger liquids, we con-
sider a simple case. We assume we are initially in the ground
state for interaction strengthV0 (with correspondingα0 and
u0) andV (t) = V0 + δV (t) for a timeτ whereδV (t) is a
random noise of strengthW . ForW = 0, the wave function
remains in the ground state andE(τ) = 0. For smallW , we
can linearize Eq. (6) and writeiδżq = 2qu0 (δzq − δα) where
δzq = zq − α0 andδα = α− α0. We then obtain

δzq(τ) = 2iqu0

∫ τ

0

dt e2iqu0(t−τ)δα(t). (9)

Using Eq. (1), we getE(τ) = 1
4α2

∑

q>0 |δzq(τ)|
2 +

O(δz3) which assuming uncorrelated noise〈δα(t)δα(t′)〉 ∝
W 2δ(t − t′) and using Eq. (9) above leads toE(τ) ∝ τW 2.
Note that sinceτc ∝ L, strong noise limits the size of the
systems which can be accurately prepared. Also notice that
|δzq(τ)|

2 ∝ q2 and in contrast to coupling to a thermal bath,
the dynamical noise discussed above creates more excitations
in modes with higher momentum. The effect of noise on a
time-dependent optimal protocol seen in Fig. 4 is mathemat-
ically more complicated but essentially similar to this simple
case. The noise-averagedE(τ) grows as a power law withW
with an exponent that depends onV1 andV2.

In summary, we used simulated annealing to address an
outstanding problem in the nonequilibrium dynamics of in-
teracting quantum systems, namely findingunbiased optimal
protocols for unitary preparation of strongly correlated states.
We focused on transforming states in the LL phase of inter-
acting fermions with tunable interaction strength. Unbiased

optimization over all ramp shapes yields nonmonotonic opti-
mal protocols. The behavior of the system exhibits a marked
transition forτ > τc ∝ L where the states can be transformed
with almost perfect accuracy. The optimal protocols are robust
against noise, which makes them of practical experimental im-
portance for the preparation of states in cold atomic systems.
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A. Hamma, P. Krapivsky, A. Polkovnikov and S. Simon for
helpful discussions. Toward the completion of this work, we
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dynamical mean field theory. This work was supported by the
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