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Out-of-equilibrium disordered systems may form memories of external driving in a remarkable
fashion. The system “remembers” multiple values from a series of training inputs yet “forgets”
nearly all of them at long times despite the inputs being continually repeated. Here, learning and
forgetting are inseparable aspects of a single process. The memory loss may be prevented by the
addition of noise. We identify a class of systems with this behavior, giving as an example a model
of non-brownian suspensions under cyclic shear.

Systems render information about their formation in-
accessible to observers after they relax to equilibrium;
a system that has not fully relaxed has the potential
to retain memories of its creation. Such behavior raises
questions about the type and amount of information pre-
served, as well as the basic operations of memory: im-
printing, reading and erasure of information. Here we
describe a class of systems that combine storage, reading,
and loss in a single, uniform process. In the short term,
these systems form concurrent memories of multiple ex-
ternal driving parameters. However, with no change in
the driving, the systems gradually eliminate this infor-
mation, selecting only one or two input values to be pre-
served at long times. With the addition of noise, all
memories can be retained indefinitely.

Such surprising behavior had first been found in a
model of electronic transport by sliding charge-density
waves [1, 2]. However, it was not clear whether this
memory formation is unique to that system or if it is
an example of a more generic phenomenon. When a
charge-density wave is driven across a sample by a se-
ries of discrete voltage pulses, each of the same dura-
tion A, the current response eventually becomes phase-
locked to the end of each pulse [3, 4]. The response there-
fore reveals information about the training history. This
“pulse-duration memory” depends only on the driving
with no fine-tuning of parameters. This behavior was
modeled as self-organization of the charge-density wave
around random defects in the material [5]. Further work
modeled the behavior of the system when M pulse du-
rations (A1,A2 . . .AM ) were applied in an arbitrary, re-
peating pattern and showed that the system learns all
these inputs at intermediate times [1, 2]. However, as
the learning progresses, most of the responses diminish,
until eventually only two memories remain. If noise is
added, all the memories persist indefinitely.

Since that work, this memory formation has remained
unique to charge-density waves; despite the ubiquity
of cyclically driven disordered systems, no one has ad-
dressed if multiple transient memory formation could be
generic. Here we show that it is. A commonly observed
phenomenon, not previously interpreted in terms of
memory formation, has similar behavior to the multiple-

pulse-duration memory in charge-density waves. Our
finding thus points to a new class of memory in disor-
dered systems.

When a disordered system, e.g. foam, granular mate-
rial, or suspension, undergoes oscillatory shear, the indi-
vidual particles rearrange as they are forced to traverse
energy barriers into nearby wells. When returned to the
initial, zero-strain position, the system has reorganized.
If this is done repeatedly at a fixed strain amplitude, γ0,
the system anneals during a transient relaxation period,
followed by a steady state where further applications of
γ0 produce no rearrangements. This is a common occur-
rence, seen, for example, in the density and crystalliza-
tion of granular media [6, 7], in ordering of colloids [8, 9],
in particle diffusion in viscous suspensions [10–12], or in
plastic events in amorphous materials [13]. As a steady
state is approached, fewer particles rearrange per cycle.
As long as the system is irreversible, it explores a dif-
ferent configuration with each cycle; it keeps exploring
possible states until it finds, if possible, a reversible one
which will then be the steady state. In general, larger-
amplitude strains cause longer relaxation times to the
steady state [6, 9, 11].

We can think of the steady-state response as a memory.
After many training cycles with amplitude γi, the system
may reach a steady state where changes no longer occur.
If the system has found a reversible state for γi, it must
also be stable for γj if γj < γi, since a larger-amplitude
shear encompasses smaller ones on its route. Thus, once
in a steady-state configuration for γi, a smaller amplitude
γj does not alter that state. However, if the system is in a
steady state for γj , application of γi will eventually erase
that steady-state configuration. Thus, the steady-state
configuration is a memory of a specific strain amplitude.
It can be read out simply by observing at what strain the
system starts to be irreversible.

To demonstrate this behavior, we use a model devel-
oped by Corté et al. to model viscous, non-brownian
suspensions in the limit of zero inertia under cyclic
shear [11]. That model simulates the rearrangement of
particles as they pass close to each other during a shear-
ing cycle of amplitude γ0. It evolves the positions of N
discs with diameter d in a 2-dimensional box of area Abox
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FIG. 1: Simulation algorithm after [11]. Particle A, outlined
in dashes, and its neighbors (B, C, D) are sheared to +γ and
then returned to γ = 0 (defined in diagram). The center of
each particle lies in a shaded region corresponding to a strain
that would bring it into collision with A: γ = 0 (black), 1
(dark grey), and 2 (light grey). At γ = 1, A and B collide;
at γ = 2, C also collides. D never collides with A for any
γ > 0. After all particles are considered in this fashion, col-
liding particles are given small random displacements and the
algorithm repeats.

with periodic boundary conditions. The algorithm con-
siders the effect on each particle of applying a uniform
strain γ as illustrated in Fig. 1, simply translating the
center of each particle by ∆x = yγ. If a particle over-
laps with another at any strain 0 ≤ γ ≤ γ0 along the
motion, it is tagged. To advance to the next timestep,
each tagged particle is moved in a random direction, by
a distance with a uniform random distribution between 0
and ǫd. This model does a remarkable job at reproducing
the phenomena observed in the experiment [10, 11]: for
sufficiently small strain, repeated application of γ0 even-
tually causes the system to become reversible so that
further application of γ0 no longer changes particle posi-
tions. Moreover, in both experiment and the model there
is a critical strain amplitude γc, above which complete
self-organization does not occur.

In our simulations, N = 104, the box is square, and the
area fraction φ ≡ (Nπd2/4)/Abox = 0.2 so that γc ≈ 4.
We focus on systems that reach a steady state: γ < γc.
We use much smaller random displacements than Corté
et al. to evolve the system (0.005 ≤ ǫ ≤ 0.1 vs. 0.5),
requiring simulation runs of > 106 cycles. In the limit
ǫ ≪ 1, we find that the evolution time scales as ǫ−2.

In Fig. 2, we plot the fraction of particles fmov that
would be moved by the algorithm in a single cycle, ver-
sus the strain. Because a particle is moved only when the
shearing motion brings it into contact with other par-
ticles, each curve probes the separations between par-
ticles, averaged over the entire system. Fig. 2a shows
the evolution of fmov(γ) as the system gradually self-
organizes from a random configuration, under a single
applied strain amplitude γ1 = 3. This value is signifi-
cantly less than the critical strain for this packing frac-
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FIG. 2: Fraction of particles moved fmov versus trial strain γ,
at selected times during the system’s evolution. (a) Evolution
with a single training amplitude, γ1 = 3.0. After 100 and
1000 cycles, the system’s self-organization is incomplete, but
the value of γ1 can be readily identified from kinks in each
curve. (b) With dual training values, γ1 = 3.0 and γ2 = 2.0,
(pattern: γ1, γ2, γ2, γ2, γ2, γ2, repeat . . . ), both values can be
identified at intermediate times. The system completely self-
organizes, retaining only the larger training value, γ1 = 3.0,
after ∼ 30,000 cycles. Grey line: memory of both values
remains after 105 cycles when the system is stabilized by noise
(ǫnoise = 0.006). Plots are averaged over 9 runs of N = 104,
with ǫ = 0.1.

tion, γc ≈ 4, so that a steady state can be formed. Cru-
cially, when the training process of repeatedly shearing
by γ1 is complete, a shear with any γ ≤ γ1 results in no
rearrangement of the particles. This permits the mem-
ory to be read out, without knowledge of the system’s
preparation, by applying a cyclic shear with progressively
larger trial γ until rearrangement is observed. However,
even before self-organization is complete, the memory
may be read out by observing a marked increase in the
irreversibility of the system quantified by the change in
slope of fmov at γ1.

Progressing to two simultaneous memories, we en-
counter a crucial distinguishing question in evaluating
memory in disordered systems: can a memory generally
be added without erasing another? Figure 2b shows that
the same system can be trained with 2 memories at once,
combined in a repeating pattern of γ1 = 3 and γ2 = 2.
(We repeat the smaller amplitude, γ2 = 2 five times for
every application of γ1 = 3. This helps make the memory
of γ2 = 2 more apparent. The memory would be there,
only harder to see, if we used equal numbers of γ1 and γ2
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in each cycle.) This result distinguishes this type of mem-
ory from (i) “return-point memory” in magnets [14, 15]
where application of a large magnetic field immediately
erases all stored memories of smaller fields, or from (ii)
aging, rejuvenation and memory in glasses [16, 17] where
the annealing protocol must be done at progressively low-
ered temperatures in order to be remembered upon re-
heating. In contrast, in our system, when a cycle with γi
is followed by one with any larger or smaller γj , we find
that the incipient memory of γi is only partly disrupted:
Fig. 2b shows that both γ1 and γ2 are evident in fmov(γ)
for much of the system’s evolution. We emphasize that
all memories are observed at all times of the transient pe-
riod, regardless of which value was most recently applied.
Using smaller values of ǫ improves multiple-memory for-
mation.

To quantify the evolution and strength of each memory,
we compute the second derivative of curves like those
in Fig. 2, i.e. f ′′

mov
≡ d2fmov/dγ

2. A peak in f ′′
mov

(γ)
signifies a memory because the rapid increase in the slope
of fmov as the system is strained past the training value
is a sign of increasing irreversibility. Fig. 3a shows the
evolution of 4 independent memories. We use a system
that evolves slowly, ǫ = 0.005, and average f ′′

mov over 117
runs with N = 104.

In all our simulations, the memories are all present
throughout the transient period and, as the system
evolves, memory of all but the highest training value is
eventually lost. In Fig. 2, the smaller γ2 = 2 is banished
when the system completely self-organizes after ∼ 30, 000
cycles. Fig. 3a shows that for the case of 4 memories, the
memories of the three smallest γi become nearly indis-
tinct after ∼ 106 cycles.

In order for multiple transient memories to be stored
and retrieved in our system, the information must be
stored locally. We can see how this works by using a
one-dimensional version of the algorithm [11]. Here the
memories are preserved in the spacing between particles,
the local density. Inside a region of the disordered sample
that is initially more dense than the average, small par-
ticle rearrangements leave the local density unchanged.
The local density can change only when the entire region
has expanded. A memory of a small value, γi, can be re-
tained in this region transiently. In order for that mem-
ory to be erased, the high-density region must dissolve as
its boundaries shrink. As this is a slow process, memories
can persist transiently even though a more stable (i.e.,
larger strain amplitude) memory is growing elsewhere in
the system. This is similar to the multiple pulse-duration
memories in charge-density waves [1, 2].

As with the charge-density wave model [1, 2], we find
that adding noise to the system can stabilize multiple
memories indefinitely. In our present model, we show
this by applying a random kick to each particle at each
time step, regardless of whether it has collided with an-
other particle. The kick is drawn from a two-dimensional
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FIG. 3: (a) Snapshots of memory strength f ′′
mov ≡

d2fmov/dγ
2 versus γ for a training process of 4 shear values,

shown by the arrows at the top and bottom. The training
pattern is 3.0, 0.6, 0.6, 2.2, 2.2, 0.6, 1.4, 1.4, 0.6. Each curve
is displaced vertically by 2 above the previous one. The simu-
lations used ǫ = 0.005. The memories are not present initially
(labeled Cycle 1) when the training is begun from a random
configuration; by cycle 1000 memories appear at all 4 posi-
tions; at 600,000 cycles the memories at the 3 lower training
values are weaker and after 1.9×106 cycles they are indistinct.
In the curves at 105, 6× 105 and 1.9× 106 cycles, the peak at
γ = 3.0 has grown too large to plot on this graph; its actual
height is 23.4, 52.4, and 73.2, respectively. (b) Adding small
noise preserves memory indefinitely; here we evolved the sys-
tem through 1.9× 106 cycles with ǫnoise = 4× 10−4. To com-
pute the curves, fmov was sampled at intervals of ∆γ = 0.04.

Gaussian distribution with standard deviation ǫnoised; we
find memories are best stabilized by ǫnoise ∼ 0.1ǫ. The
preservation of memories by noise is shown by the grey
curve in Fig. 2b, and by Fig. 3b. Although at first this
may seem surprising, we can easily understand this be-
havior because noise disrupts the self-organization and
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thus ensures that the system never reaches its final fixed
point. The presence of noise thus insures that the system
is constrained never to leave the transient regime.
The simulation algorithm we have described was orig-

inally developed to explain the behavior of a cyclically
sheared non-brownian suspension [11]. This suggests
that this experimental system may exhibit the kind of
memory we have demonstrated in simulations. The mem-
ories could be formed and then read out with a strain-
controlled, strain-resolved measurement in a rheometer.
However, the experiments of Corté et al. [11] have a char-
acteristic self-organization time τ0 . 50 cycles, so that a
detection approaching the quality of that presented here
may be difficult in that realization.
We can contrast this form of memory with some oth-

ers that have been proposed in materials and biology.
Return-point memory in magnets also has a hierarchy of
training inputs. But those systems differ in that they
organize promptly and any memory is wiped out as soon
as a larger field is applied [14, 15]. This strict ordering
of memories is also true for aging and rejuvenation in
glasses in that a higher temperature wipes out memories
at lower temperatures [16, 17]. This differs from multi-
ple transient memories. The effect of noise in enhancing
memory retention, rather than degrading it, is also a re-
markable result of the memory mechanism presented here
and has no counterpart of which we are aware in those
other systems. Lastly, multiple transient memories can
be contrasted with those of the neural-networks used to
model associative memory [18]. In the former case, mem-
ory formation is local and depends on the path taken dur-
ing each cycle. If a section of the system is removed from
its surroundings, it would continue to have the memo-
ries stored within it, although with perhaps somewhat
degraded resolution.
Under repeating driving, our simulation of sheared par-

ticles stores multiple memories, but eventually retains
only one. This also represents a simple information pro-
cessing operation, choosing and storing the largest value
among a repeated set of inputs. Our system shares this
response with charge-density waves [1, 2]. However, it
shares only a few attributes of the underlying dynamics:
unlike the charge-density wave model, it is not determin-
istic and is not confined to one dimension. The present
findings suggest that this behavior represents a new class,
which instead of being limited to charge-density-wave
conductors, may be found in disordered systems gener-
ally — including possibly biological systems where cyclic
behavior is common and noise is important. In partic-
ular, there are many annealing protocols for disordered
materials; as mentioned above, under oscillatory shear, or
vibration [19], many disordered materials relax towards a
steady state. One of the outcomes of this study is to sug-

gest that these generic steady states can be considered as
memories of the annealing process and that systems such
as these are complex enough to store several memories
simultaneously.
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