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The equilibration dynamics of a closed quantum system is encoded in the long-time distribution
function of generic observables. In this paper we consider the Loschmidt echo generalized to finite
temperature, and show that we can obtain an exact expression for its long-time distribution for a
closed system described by a quantum XY chain following a sudden quench. In the thermodynamic
limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches
in the opposite, quasi-critical regime, the distribution function acquires a universal double-peaked
form indicating poor equilibration. These findings, obtained by a central limit theorem-type result,
extend to completely general models in the small-quench regime.

PACS numbers: 03.65.Yz, 05.30.-d

Introduction Imagine an isolated quantum system,
say the laboratory, prepared in a state ρ0. Accord-
ing to the laws of quantum mechanics, the state will
evolve unitarily into ρ (t). The average result of a mea-
surement of an observable O will be the time average

〈O (t)〉 := T−1
´ T

0 〈O (t)〉dt, where T is the measurement
time. Since T is much larger than the microscopic time
scales of the system it is often set to infinity for math-
ematical clarity. Now, the postulates of statistical me-
chanics assert that the time-averaged expectation value
is indistinguishable from that obtained using the statis-
tical microcanonical ensemble. Although this postulate
is confirmed by a number of numerical simulations (see
e.g. [1] and [2] for counter-examples), to date no explana-
tion exists for why this is so. In other words, the mecha-
nisms of thermalization in quantum systems are unknown
(though there exist possible approaches such as normal
typicality [3]).

In such a context it is important to have exact re-
sults, at least for some particular cases, which can serve
to guide our intuition. Ideally one is interested in the
full, long-time statistics of a generic observable 〈O (t)〉.
This article provides a result in this direction. Namely,
concentrating on the Loschmidt echo, we will obtain its
exact, long-time distribution function and investigate the
effects that proximity to critical points has on the equi-
libration dynamics. In the thermodynamic limit, also
called the off-critical regime, i.e. when the system size is
much larger than all length scales of the system, we will
see that a central limit theorem result applies leading to
universal Gaussian equilibration. In the opposite regime
of quasi-criticality, where the correlation length is equal
to or larger than the system size, we will again find uni-
versal behavior, although one in which fluctuations are
large and thermalization does not occur.

The scenario we consider here is that of a quantum
quench, generalized to the mixed case. A closed system
is initialized in the state ρ0 commuting with the Hamil-
tonian H0. The system is then instantaneously quenched

and left to evolve according to Hamiltonian H1. This is
an important generalization, since in principle there is
no reason why the “initial” state of the system should be
pure. In particular, for its experimental relevance we will
use Gibbs initial states ρ0 ∼ e−βH0 . Such a situation is
in fact often realized in the laboratory by first thermaliz-
ing the system by putting it in contact with an external
reservoir and then detaching the reservoir.
The quantity we consider is the Loschmidt echo (LE)

initially introduced in the context of quantum chaos (see
e.g. [4]). In our set-up where [ρ0, H0] = 0 the LE gener-
alized to the mixed case is given by

L (t) = F (ρ (t) , ρ0) , F (ρ, σ) =
(

tr
√

ρ1/2σρ1/2
)2

.

Here F is the Uhlmann fidelity [5] which characterizes the
degree of distinguishability between two mixed states.
Note that if either (or both) of ρ and σ is pure, the
Uhlmann fidelity simplifies to F (ρ, σ) = tr (ρσ) and an-
other name for the LE is survival probability.
The quantum XY chain The model we investigate

here is the quantum XY chain in a transverse magnetic
field,

H = −
L
∑

i=1

(1 + γ)

2
σx
i σ

x
i+1 +

(1 − γ)

2
σy
i σ

y
i+1 + hσz

i . (1)

A Jordan-Wigner transformation brings Eq. (1) to a
quadratic form in Fermi operators ci, and hence can be
exactly diagonalized. At zero temperature the model (1)
displays two kinds of quantum phase transition lines in
the (h, γ) plane. For h = ±1 and γ 6= 0 the model is in the
Ising universality class described by a c = 1/2 conformal
field theory (CFT). Instead, in the segment γ = 0, |h| ≤ 1
the underlying CFT has central charge c = 1. To specify
completely the problem we must fix boundary conditions
(BC’s). As is customary [6], to avoid unnecessary compli-
cations we will fix BC’s on the fermions and specifically
consider anti-periodic ones: ci+L = −ci. This corre-
sponds, in practice, to parity-dependent BC’s for Eq. (1)
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Figure 1. Typical behavior of L(t). The inset shows Gaussian
behavior for short times, as happens for the pure case [9].
Here L = 100, β = 6, h0,1 = 1, γ0 = 0.5, γ1 = 0.8.

(see e.g. [7] for a discussion). All the result presented also
hold for periodic BC’s on the fermions (see also note [8]
below). Diagonalization brings Eq. (1) to free Fermion

form: H =
∑

k 2Λkη
†
kηk. Our choice of BC’s fixes quasi-

momenta to be quantized according to k = (2n+ 1)π/L,
n = −L/2, . . . , L/2 − 1, whereas the single-particle dis-

persion is Λk =

√

(cos k + h)
2
+ γ2 sin2 k.

The Loschmidt echo has been shown for the XY chain
to be [10] L(t) = ∏

k>0 fk
(

Λ1
kt
)

, with

fk
(

Λ1
kt
)

=





1 +
√

c2k − (c2k − 1)αk sin
2(Λ1

kt)

1 + ck





2

(2)

where ck = cosh
(

βΛ0
k

)

, αk = sin2(∆θk) , ∆θk = θ1k − θ0k
and θk = arctan [γ sin (k) / (h+ cos (k))]. From its ex-
plicit form we can read off a number of important points
which we will use extensively in the following: i) the time-
dependence is governed by L/2 frequencies Λ1

k, ii) the LE
is a product of an extensive number of terms, and in par-
ticular iii) the LE is a product of L/2 functions over the
L/2 allowed values of k. The dependence on k is ana-
lytic everywhere except for the critical points (γ = 0 and
|h| ≤ 1 or |h| = 1 and γ 6= 0). No singularity other than
those expected at criticality emerges.
Typical behavior of L(t) is depicted in Fig. 1. The

LE quickly drops from unity at t = 0 and then oscil-
lates about its average value, with almost periodic re-
vivals [11].
Following the spirit of Refs [9, 12], we are interested in

the distribution function of the LE seen as a random vari-
able over infinite time equipped with the uniform mea-
sure. The probability density of the LE can be written as
PL (x) := δ (L (t)− x), where the bar denotes the time

average (i.e. f = limT→∞ T−1
´ T

0 f (t) dt). Saying that
the LE spends most of the time close to a certain value
corresponds to a concentration result for PL (x).
The moments of the LE can be computed us-

ing the methods developed in [9]. Here one has
the additional complication given by the presence of
the square-root in Eq. (2), which must first be ex-
panded into an infinite series. The result for the

first moment is L =
∏

k>0 f
1
k , with f1

k = 1 −
(

1− c−1
k

)

αk

2 + 2ck
(1+ck)

2

[

2
πE (bk) + bk/4− 1

]

. Here, bk =
(

1− c−2
k

)

sin2 (∆θk) and E is the complete elliptic in-
tegral of the second kind. Expanding f1

k in the small
quench regime, that is up to second order in ∆θk, one
is able to relate the dynamical quantity L to the static
quantity F (ρ0, ρ1)

2
, where ρ0,1 are Gibbs states with

Hamiltonians H0,1. The precise relation given in [13]

extends the pure state result L = tr
(

ρ2
)

≃ |〈ψ0|ψ1〉|4
which can be recovered sending β → ∞ [14].
The distribution function for the LE in the Ising model

(i.e. γ = 1) at zero temperature was considered in [9].
Through numerical simulations it was argued that, in
the off-critical regime, two different behaviors were ob-
served. The distribution of the LE was seen as similar
to an exponential one, (PL (x) ≃ ϑ (x) e−x/L/L) or to a
bell-shaped Gaussian-looking one. In the next section we
will unify both of these conjectured results.
Off-critical regime and Gaussian equilibration The

form of the LE suggests that the LE should be thought
of as a product of variables. Let us then consider the
new variable Z = lnL. We will show that, under a
very mild hypothesis, the variable Z satisfies the stan-
dard central limit theorem (CLT). In particular, in the
off-critical regime, as L → ∞, the rescaled variable
Y =

(

Z − Z
)

/
√
L will tend in distribution to a Gaus-

sian with zero mean and well-defined variance. To this
aim we will show that all the cumulants of Z scale ex-
tensively, so that for the rescaled variable Y we will get
κn (Y ) ∝ L1−n/2 for n ≥ 2 while κ1 (Y ) = 0 by con-
struction. Hence only the first two cumulants of Y sur-
vive in the L → ∞ limit, thus showing Gaussianity of
Y . In turn, Gaussianity of Y implies that the LE is ap-
proximately Log-Normally distributed. This explains the
behavior observed in [9], as a Log-Normal has regimes
where it looks approximately exponential or Gaussian.
In order to prove our assertion we need the (logarithm

of the) moment generating function of Z, MZ (λ) :=

eλZ = Lλ. At this point we make the reasonable as-
sumptions that the L/2 frequencies Λ1

k are rationally in-

dependent (that is, linearly independent over the field of
rational numbers). Thanks to rational independence (RI)
we can use the theorem of averages (see e.g. [15] on page
286) to compute the time-average of Lλ as a phase space
average over an L/2-dimensional torus [8]. Our numeri-
cal simulations show that a possible rational dependence
is very mild and it would be quite unlucky to produce
enough correlations to invalidate the CLT. With RI, we
obtain

MZ (λ) =
∏

k>0

gk (λ) , gk (λ) =
1

2π

ˆ 2π

0

[fk (ϑ)]
λ
dϑ.

Hence MZ (λ) = exp
∑

k>0 ln gk (λ). The last steps of
the proof come from the fact that ln gk (λ) as a function
of k is Riemann integrable, with a finite integral, provided
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Figure 2. PZ close to the Ising (left) and anisotropy transition
(right). As L grows we enter the off-critical regime and PZ

becomes Gaussian. Close to the quasi-critical regime (small
L) the distribution becomes a broad, generally double-peaked
function. For the anisotropy transition, one can have L for
which the highest amplitudes are nearly equal (see text). This
results in a collapse from two peaks to one. Parameters are
β = 40 and (left) h0 = 0.98, h1 = 1.02, γ0,1 = 1.0 and L = 50
to 200 in steps of 30, (right) h0,1 = 0.5, γ0 = 0.01, γ1 = −0.01
and L = 50 to 100 in steps of 10. Another way to enter
the off-critical regime is to increase the temperature. Similar
plots are obtained replacing L with the temperature T .

we are away from critical points. Moreover, in the same
region of parameters, ln gk (λ) (and so its integral over
k) is analytic in λ. Specifically, for large L, we obtain,
ln
[

MZ (λ)
]

≃ LG (λ), with G (λ) =
´ π

0 ln gk (λ) dk/ (2π)
analytic in λ. Differentiating with respect to λ we obtain
that all the cumulants of Z are extensive, which com-
pletes the proof. �

In particular, one has the CLT anywhere away from
the critical points: no other source of singularity emerges
other than those expected at criticality.

Let us now pause for a moment and discuss how the
CLT could be violated. One possibility is that the
variance of Z may grow with L more than extensively,
i.e. κ2 (Z) ∝ LQ, with Q > 1. This would imply that
the variance of the rescaled variable would diverge as
L → ∞, thus breaking the CLT. It can be shown that
κ2 (Z) =

∑

k>0 κ2 (k) with κ2 (k) = m2 (k) − [m1 (k)]
2
,

and mn (k) = 1
2π

´ 2π

0 [ln (fk (ϑ))]
n
dϑ with n = 1, 2. By

direct inspection of the integrals it turns out that κ2 (k) is
a bounded function in the entire parameter range. Hence
κ2 (Z) ≤ const.× L also at critical points.

Quasi-critical regime and universal critical equilibra-

tion In Ref. [12] it was argued that for a small quench
close to a critical point, no observable (except for trivial
constants of motion) thermalizes. Here we will show that
this result generalizes to the mixed case considered here.
Moreover, as we will see, some universal features of the
underlying critical theory show up in the long-time dis-
tribution function. For the reasons explained above, the
right quantity to look at is the Log of the LE.

Since we are interested in the small quench regime, we
expand the Log of the LE up to the first non-zero order
in ∆θk. The constant terms add up to contribute to the
average and, dropping fourth-order terms and going to

the energy variable ωj = 2Λ1
kj

we arrive at

lnL (t) = Z +
∑

j

aj cos (tωj) , (3)

where the amplitudes are defined via a (k) =
(

1− c−1
k

)

(∆θk)
2
/2 and aj = a (kj).

Now we make the important observation that the quan-
tity (3) is in fact a sum of L/2 independent random vari-

ables. This can be shown assuming again RI of the fre-
quencies ωj. Using the ergodic theorem one realizes that
the moment generating function of lnL is simply the
product of L/2 generating functions. Taking the Fourier
transform, one sees that each variable is distributed ac-

cording to Pj (x) = π−1ϑ
(

a2j − x2
)

/
√

a2j − x2, with zero

mean and variance a2j/2.
We are now in a position to understand what can

happen at criticality and in which sense we can ex-
pect violation of the CLT. As explained above, the to-
tal variance, which in the small quench regime reads
κ2 (Z) = (1/2)

∑

j a
2
j , cannot grow more than exten-

sively. But the other extreme is possible, namely the
variances a2j/2 can go to zero as L increases, and this
can happen for most of the L/2 variables. When this
is the case, Eq. (3) effectively represents a sum of very
few independent variables, and the CLT regime cannot
be reached.
As we will see, close to criticality aj is a rapidly-

decreasing function of j, so that only few amplitudes
are appreciably different from zero. In this situation,
a good approximation to the distribution function for
Z is given retaining the nmax largest amplitudes aj in
Eq. (3). Choosing nmax = 1, the distribution is the just-
encountered Pjmax

(x) with square-root singularities at
±ajmax

. With nmax = 2 the distribution is still a very
spread double-peaked one, with logarithmic singularities
at Z±||a1| − |a2|| as shown in [9]. Using the ergodic the-
orem it can be shown that this distribution is precisely
the density of states (DOS) of a tight-binding model in
two dimensions, with anisotropic couplings. In general,
the distribution function obtained by keeping nmax am-
plitudes is the density of states of a hypercubic nmax-
dimensional tight binding model with anisotropic cou-
plings aj/2 (j = 1, . . . , nmax) in each direction. Adding
more and more amplitudes, eventually the CLT sets in
and the distribution approaches a single-peaked Gaus-
sian. Clearly, when nmax is small the distribution func-
tion is very spread with a large variance, so thermaliza-
tion does not take place.
Let us now discuss the behavior of aj close to crit-

icality. The XY model has two different kinds of criti-
cal regimes characterized by different underlying effective
field theories. We now consider separately both critical
regimes. First of all, note that increasing the tempera-
ture simply has the effect of multiplying a (k, T = 0) by a
factor

(

1− cosh−1 (Λk/T )
)

≤ 1. At the Ising transition
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we observe a large peak in a (k) close to k = π. The rea-
son for the peak has to be ascribed to the single-particle
energy vanishing as ω = v (k − π) (where v = 2 |γ| is a
velocity). The precise mechanism has been explained in
[12] for the pure case. At finite size the quasimomenta k
take only discrete values. Correspondingly, most of the
weight is absorbed by those k’s which fall in the peak.
Other amplitudes a (kj) are considerably smaller. As a
result, a good approximation to the distribution can be
given by a 2D DOS as shown in Fig. 2, left panel.

The situation at the anisotropy transition (c = 1 line)
is very similar, with some notable difference due to the
precise character of the c = 1 CFT. As can be easily
seen, a (k) now has two peaks, due to the presence of
two chiral (Majorana) Fermions corresponding to the two
branches of ω = v |k − kF |. The double-peaked form of
a (k) has some detectable consequence on the structure
of the distribution function. Namely, according to differ-
ent quantization of quasimomenta (and damping factor
due to temperature) the allowed values of k can fall sym-
metrically displaced among the peaks. When this is the
case we will observe, somehow accidentally, a distribu-
tion function given the 2D DOS with a1 = a2. In this
case the two peaks of the distribution merge into a single
one, as can be seen in Fig. 2 right panel at L = 60, 90.

Generalization We now give an argument in sup-
port of the validity in general of this scenario for small
quenches. Let us restrict, for simplicity, to zero temper-
ature. Assuming a completely generic, non-degenerate
HamiltonianH =

∑

nEn|n〉〈n|, the LE reads L (t) = L+
2
∑

n>m pnpm cos (t (En − Em)), where pn = |〈n|ψ0〉|2
for an initial state |ψ0〉. Consider now the logarithm
of the LE and expand it in the small quench param-
eter (that is in the perturbing potential V , which we
assume to be extensive). Up to second order we ob-
tain lnL (t) = Z + 2

∑

n>0 pn cos (t (En − E0)), where

for a small quench pn = |〈n|V |0〉|2 / (En − E0)
2
. If we

now assume additionally RI for the energy gaps, we re-
turn to the previous situation with aj = 2pj, namely
CLT away from criticality, meaning Gaussian equilibra-
tion. Note that the total variance is at most extensive:
κ2 (Z) = 2

∑

n>0 p
2
n ≤ 2

∑

n>0 pn = 2χ, where χ is the
fidelity susceptibility and is extensive by the extensivity
of V and the assumption of non-criticality [16]. In the
quasi-critical regime only a few terms of the sum domi-
nate, thus breaking the CLT and leading to a universal,
poorly equilibrating regime.

Conclusions In this letter we have considered the fi-
nite temperature generalization of the Loschmidt echo
(LE) after a quantum quench. We have proved, un-
der a very mild hypothesis, that away from critical
points the LE is Log-Normally distributed, whereas for
small quenches close to criticality the distribution ap-
proaches that of the density of states of a D-dimensional
anisotropic tight binding model, where D can be consid-

ered small (e.g. D = 1, 2). Although these results could
be obtained analytically for the XY model considered
here, we conjecture that such behavior is in fact general
and not restricted to solvable models.
LCV gratefully acknowledges support from Euro-

pean project COQUIT under FET-Open grant num-
ber 2333747, NTJ from an Oakley Fellowship, and PZ
from NSF grants PHY-803304, PHY-0969969 and DMR-
0804914.

[1] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854
(2008).

[2] C. Gogolin, M. Mueller, and J. Eisert, Phys. Rev. Lett.
106, 040401 (2011).

[3] J. von Neumann, Zeit. Für Phys. 57, 30 (1929), see also
the English translation: Eur. Phys. J. H, 35, 201 (2010).
S. Goldstein, J. L. Lebowitz, C. Mastrodonato, R. Tu-
mulka, and N. Zangh̀ı, Phys. Rev. E 81, 011109 (2010).
H. Tasaki (2010), arXiv:1003.5424.

[4] R. Jalabert and H. Pastawski, Phys. Rev. Lett. 86, 2490
(2001).

[5] A. Uhlmann, Rep. Math. Phys 9, 273 (1976).
[6] E. Barouch, B. M. McCoy, and M. Dresden, Phys. Rev. A

2, 1075 (1970).
[7] L. Campos Venuti and M. Roncaglia, Phys. Rev. A 81,

060101R (2010).
[8] Given the form of the Λk we can expect that RI holds

for most γ, h (i.e. except for a set of zero measure) and
for some L. From Gauss’ theorem on the irreducibil-
ity of cyclotomic polynomials (see e.g. [17] Chapter 12)
one can derive rational independence of {cos (2πj/L)}
for j = 1, 2, . . . , (L− 1) /2 for L prime. Calling ζj =
exp iϑj with ϑj = 2πj/L, Gauss’ theorem asserts that
∑L−1

j=1 njζj = 0 with nj ∈ Z implies nj = 0 whenever
L is prime. Taking real and imaginary parts one obtains
∑(L−1)/2

j=1 n+
j cos (ϑj) = 0 and

∑(L−1)/2
j=1 n−

j sin (ϑj) = 0,

with n±

j = nj ± nj+(L−1)/2. Since the numbers n+
j and

n−

j are independent, the result follows. This result holds
both for periodic and anti-periodic momenta considered
here: {cos (π(2j + 1)/L)}. Hence one can expect that
such RI carries over to the Λk, but it is possible that
the functional dependence may lift the requirement that
L is prime.

[9] L. Campos Venuti and P. Zanardi, Phys. Rev. A 81,
022113 (2010).

[10] P. Zanardi, H. T. Quan, X. Wang, and C. P. Sun,
Phys. Rev. A 75, 032109 (2007).
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